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ABSTRACT

IMPROVING NEURAL NETWORK CLASSIFICATION TRAINING

Michael E. Rimer
Department of Computer Science

Doctor of Philosophy

The following work presents a new set of general methods farovimg neural
network accuracy on classification tasks, grouped under the labelssifidation-based
methods. The central theme of these approaches is to provide preplesentations
and error functions that more directly improve classificatiomgmy than conventional
learning and error functions.

The CB1 algorithm attempts to maximize classification acyulesy selectively
backpropagating error only on misclassified training patterns. @&porates a sliding
error threshold to the CB1 algorithm, interpolating between #tewor of CB1 and
standard error backpropagation as training progresses in ordmroid prematurely
saturated network weights. CB3 learns a confidence thresholddiorcembination of

training pattern and output class. This models an error functioadbaa the
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performance of the network as it trains in order to avoid localfib\ard premature
weight saturation. PL1 is a point-wise local binning algoritheed to calibrate a
learning model to output more accurate posterior probabilities. aldmsithm is used to
improve the reliability of classification-based networks whiléaireng their higher
degree of classification accuracy.

These approaches are demonstrated to be robust to a variety ofggmrameter
settings and have better classification accuracy than stanglammbahes on a variety of

applications, such as OCR and speech recognition.
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Chapter 1

Introduction

The study of machine learning is largely concerned with impgotee automation of
decision making processes, ranging from function approximationegsign tasks) to
classification or concept learning (selecting from a set ofilplesshoices). Examples of
classification are performing medical diagnoses, optical cteraecognition, speech

recognition, and document content identification.

The artificial neural network (ANN) was inspired by biologio@odels of neurological
systems and is an established machine learning model with teaushg properties and
simple deployment. ANNs are often used as a “black box” thegives data
observations as input and outputs decisions based on these observations.orKhis w
focuses on studying and improving the theoretical and practicabfuasificial neural

networks in classification problem domains.

1.1 Issues in learning

In order for a learning model to output educated decisions, it mnstsbé trained. There
are various issues involved in training that affect a model's suhsegeeognition
performance. To train a learner (whether it be a human or chined, real data
observations from the problem domain must be acquired. In many problermsioitnia
infeasible to acquire data for, or even model, the complete domain. e, Hexining

consists of encountering a subset of instances picked in some fashiothé&amtire
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Chapter 1. Introduction

problem domain. A training sef, consists of a finite numbelN, of observations. An

observationX, may be defined on a vectorloéttributes (or features),

X = (XL X21 "'lxk)l

and is given an associated target vay@dicating the correct decision:

Training Set = {Kn, yn) n=1, 2, ...,N}.

In supervised learning, the model’s task is to accurately predices fory given
instances ofX. However, the main goal in learning is not for the model meely
memorize the training data, but rathegemeralizewvhat the limited training data teach in
order to make correct decisions on future data encountered aceogstire problem

population.

A learner must apply some inductive bias to forming a hypotkiegisorrectly classifies
the training data. However, if the learrmrerfits or makes false assumptions on the
general nature of the problem based on idiosyncrasies in thedraiet, this can become
a detriment to generalization. ANNSs, like many other learningrigiigms that can form
complex hypotheses, are prone to overfitting. There is an inheeslgoff between
fitting the training data perfectly and generalizing accuyateker the entire population.
Much work has gone into studying how to achieve this balance, withhgadggrees of

success, but intrinsically this remains an open problem.
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Chapter 1. Introduction

1.2 Neural network training issues

The iterative error backpropagation algorithm commonly used to AldiNs is adept at
approximating continuous functions of high degree. This learning tilgodan also be
used in classification. However, the mathematical represamgatf a classification task
have different properties than that of function approximation, and tu@recertain

distinctions in the training process of each. This leads to impadtsictions in the

type of learning approach best suited to either task, which telateoiding overfit and

achieving high generalization.

To generalize well, error backpropagation must use a proper emamigation, or
objective, function. A common error function is minimizisgm-squared-erro(SSE).
The validity of using SSE as an objective function relies on seanmaption that pattern
outputs are offset by inherent Gaussian noise, being normallybdtstli about a cluster
mean. For function approximation of an arbitrary signal, thisupnption often holds.
However, this assumption is invalid for classification problems wtierdarget vectors
are class codings (i.e., arbitrary nominal or boolean values rapresdesignated class
labels). In this case, it is better to maximizess-entropy(CE) in order to discriminate
among choices. However, these objective functions provide mechanisimsotimat
explicitly reflect the goal of classification learninge(i achieving high recognition rates

on unseen data).
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Chapter 1. Introduction

1.3 Contribution of this work

The contribution of this work is to improve on the conventional approach iofnga
ANNs by minimizing a global error function. Error functions [I&SE and CE,
maintaining routine statistical properties and mathematicalreotyt, are replaced with
non-continuous error functions that seek to more directly train ANNgheralize well
on classification problems. These methods are more analogous tothewearning
models, like decision trees, perform concept-based learning, whileesaining the

simplicity, speed and robustness of ANNSs.

This work presents several methods for learning classificatsks tdat are superior to
existing learning algorithms. These classification-based (@&hods are implemented
in various ways, but the general approach is to define an objéatiggon that seeks to
directly minimize classification error instead of attempttogapproximate a function
represented by transformed class labels (i.e., 0/1 targ&tss work is a collection of

these methods, which have either been published previously or submitted foatpubl

in various refereed journals or conferences. Following is a suynof each chapter

paper, followed by the publication reference.

Chapter 2 presents the notion of classification-based objective fusctilbrdiscusses
properties of backpropagation learning as related to classficpgrformance in detail.
CBJ1, the first incarnation of a classification-based objective fancis presented. CB1
does not backpropagate an error signal through the network on corriectyfied

patterns. CB1 is shown to discourage premature weight saturatgbningprove
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Chapter 1. Introduction

generalization. It performs successfully on speech recogndgks,ta large OCR data
set and several benchmark problems selected from the UC Irvictindalearning
Repository. [Rimer, M. & Martinez, T. (2006). Classification-based Objective

Functions Machine Learningvol. 63, no. 2, pp. 183-205.]

Chapter 3 illustrates how CB1, also calllezy training since it skips training on
correctly-classified patterns, may be applied to a multiggeech model to improve
recognition accuracy over training with CE. [Rimer, M., M&#t, T. & Wilson, D.

(2002). Improving Speech Recognition Learning through Lazy Trajrfdfngceedings of

the IEEE International Joint Conference on Neural Networks IJCNN'02, pp. 2568-2573.]

Chapter 4 presentSB2, or softprop a combination of SSE and CB1. It performs error
minimization analogously to the “softmax” exploration policy used-learning that
combines greedy exploitation with conservative exploration in an optiioie search.
This exploration policy tends to be effective in complex problem spéhet have many
local minima. Implementing this methodology in ANN training is shdwrachieve
higher test accuracy and more robust solutions than either SSBloffRIimer, M. &
Martinez, T. (2004). Softprop: Softmax Neural Network Backpropagation Learning
Proceedings of the IEEE International Joint Conference on Neetaloxks IJCNN'04,

pp. 979-984.]

! This chapter is an extension of work previouslplihed in [Rimer, M. & Martinez, T., IJCNN 2001;
Rimer, M., Master’s Thesis, Brigham Young Univeys2002].
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Chapter 1. Introduction

Chapter 5 presents CB3, a classification-based algorithm whiébripsradaptive local
modifications to the error function during training. CB3 is desigme@dddress the
concern that ANN overfit is not only a global, but more partityladocal phenomenon,
for which adaptive localized learning can be beneficial. Basetthe network’s success

in learning individual training patterns, CB3 adjusts these pattetiesided target values
during training by learning individual confidence margins. CB3 esdibignificantly
improved generalization over conventional training, CB1, and CB2. [Rimer, M. &
Martinez, T. (2006).CB3: An Adaptive Error Function for Backpropagation Training

Neural Processing Letters, vol. 24, no. 1, pp. 81-92.]

Chapter 6 performs an in-depth comparative analysis of SSE, CE, G21a6d CB3,
measuring their robustness to initial conditions, learning parasneted convergence
properties. CB3 is shown to be superior with respect to all of.thfRemer, M. &
Martinez, T. (2006). Analysis of Classification-based Error Functipr&ibmitted to

Machine Learning.]

Chapter 7 presents PL1, a novel method of calibrating a learning . m@&isdibration
refers to how accurate a learning model is in predicting posteradrabilities.  Utility
theory dictates that, in order for a general learning model rforpe optimally, it must
output well-calibrated probabilities. In other words, model calibraiomportant since
a learning model does not operate in isolation, but rather outputdeocdi values which
must subsequently be acted on by an operator to make a finabdecide efficacy of

using PL1 to calibrate ANNs in order to reduce probability estimaerror is
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Chapter 1. Introduction

demonstrated. [Rimer, M., Peterson, A. & Martinez, T. (200®)proving Posteriors

with Point-wise Local Binningsubmitted to Neural Processing Letters.]

Chapter 8 presents results of applying PL1 to CB algorithms. dbheve

implementations of CB learning are designed to output corredifatasons as much as
possible, but in doing so, neglect to output accurate probability essintdt these
decisions. The PL1 algorithm is used as a post-processing stapbi@te CB1-3 to

output more accurate posterior probabilities. In particular, CBBas/n to operate with
similar precision to CE when both are calibrated, while CB3n®t#s higher degree of
generalization. [Rimer, M. & Martinez, T. (2007)Calibrating Classification-based

networks to improve posterigrsubmitted to Neural Processing Letters.]

Chapter 9 presents an alternate stochastic model for leadasgification tasks. Four
heuristics are presented for selectively choosing which patsegresented to the
network during training. The primary purpose of this work at the difrpublication was

to illustrate how functionally redundant training patterns manadyically be culled from
the training set to dramatically increase learning speeHdoutitdegrading accuracy.
[Rimer, M., Andersen, T. & Martinez, T. (20015peed Training: Improving Learning
Speed for Large Data SetdCNN'2001: INNS-IEEE International Joint Conference on

Neural Networks, Washington, D.C., pp. 2662-2666.]
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Chapter 1. Introduction

The following papers were developed concurrently with the abovgearisa Though not
directly related to classification-based learning, they prowsomilar studies in the

optimization of ANN training and are included here as appendices for compsetenes

Appendix A is a study of the optimal network size for ANNs ojegaélone in contrast
to networks included in an ensemble. It is shown that the optimalf@iznetworks
operating in an ensemble is smaller than for a network operdting an the tested data
sets. [Andersen, T., Rimer M. & Martinez, T. (200Dptimal Artificial Neural Network
Architecture Selection for BagginglJCNN'2001: INNS-IEEE International Joint

Conference on Neural Networks, Washington, D.C., pp. 790-795.]

Appendix B presentsracle learning in which we study how a small neural network may
be trained to mimic the performance of a much larger netwoduinig a small network

is a practical consideration when developing a recognition systeémtish have a small
memory footprint. It is demonstrated that an oracle-trained nketeanm exhibit better
performance than a network of equivalent size trained directly onrdéimeng data.
[Menke, J., Peterson, A., Rimer, M. & Martinez, T. (2004twork simplification
through oracle learning Proceedings of the IEEE International Joint Conference on

Neural Networks IJCNN'02, pp. 2482-2487.]
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Chapter 2

Classification-based Objective Functions

MICHAEL RIMER mrimer@axon.cs.byu.edu
TONY MARTINEZ martinez@cs.byu.edu
Computer Science Department, Brigham Young University, Provo, UT 84602, USA

Phone: (801) 422-6464 Fax: (801) 422-0169

Abstract. Backpropagation, similar to most learning algorithms that cem tomplex
decision surfaces, is prone to overfitting. This work presents ifdaisn-based
objective functions, an approach to training artificial neural nétsvon classification
problems. Classification-based learning attempts to guide thenkedirectly to correct
pattern classification rather than using common error minimizdteuristics, such as
sum-squared error (SSE) and cross-entropy (CE), which do not dyphdnimize
classification error. CB1 is presented here as a novel objdctnation for learning
classification problems. It seeks to directly minimize dfasdion error by
backpropagating error only on misclassified patterns from culprit outpdiées. CB1
discourages weight saturation and overfitting and achieves highmrraag on
classification problems than optimizing SSE or CE. Experiments on a large O&Cgetlat
have shown CB1 to significantly increase generalization accuoaey SSE or CE

optimization, from 97.86% and 98.10%, respectively, to 99.11%. Comparable egsults
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Chapter 2. Classification-based Objective Functions

achieved over several data sets from the UC Irvine MachinenibgaDatabase
Repository, with an average increase in accuracy from 90.7% and 9118y®psmized
SSE and CE networks, respectively, to 92.1% for CB1. Analysis indiths CB1
performs a fundamentally different search of the feature spacedptimizing SSE or

CE and produces significantly different solutions.

1 Introduction

Artificial neural networks have received substantial attentmo@ust learning models
for applications involving classification and function approximation (Rbarg Hinton,
& Williams, 1985). This work proposes the use of classification-b&S8) objective
functions to improve backpropagation, increasing generalization on complex
classification tasks. The CB1 algorithm is presented as #ie oontribution. It is an
example of a CB objective function suited to learning classificdasks. CB1 seeks to
directly minimize classification error by backpropagating ewooly on misclassified
patterns from output nodes that are responsible for the misaassifi. In doing so, it
updates the network parameters as little as possible. Thisdeehtiscourages weight
saturation and overfitting and is conducive to higher accuracy isifatasion problems
than optimizing with respect to common error functions, such as sum-squarg&SEpr

and cross-entropy (CE).

CB1 is shown to perform markedly better on a large OCR datthae an optimized

backpropagation network learning with respect to SSE or CE, increesisgfication

10

www.manaraa.com



Chapter 2. Classification-based Objective Functions

accuracy from 97.86% and 98.10%, respectively, to 99.11%. Comparable iadrease
accuracy are achieved on several classification problemstirendC Irvine Machine
Learning Repository, with an average increase in accuracy 3@it?o and 91.3% for
optimized SSE and CE networks, respectively, to 92.1% for CB1 perfgra-fold
stratified cross-validation. Analysis indicates that CB1 perfora fundamentally
different search of the feature space than backpropagation apgn88E or CE and

produces significantly different solutions.

A background discussion and comparison of common objective functions to CB1 is
provided in Section 2. The CB1 heuristic is presented in Section Berients and
analysis are given in Section 4 and discussion in Section 5. Fur8wrssion of
learning issues with feed-forward backpropagation neural networkgittovgr and how
these relate to CB1 is presented in Section 6. Future work isexuthh Section 7 and

conclusions are presented in Section 8.

2 Objective Functions

Since gradient descent procedures, such as backpropagation, do not allow dire
minimization of the number of misclassified patterns (Dudat,HarStork, 2001), an
error or objective function must be derived that results in inadeatsssification
accuracy as objective error is minimized. Network output valuest rhage a
corresponding error measure derived by their deviance from targput values.

Quantifying the output error provides a way for iteratively upapthe network weights

11
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Chapter 2. Classification-based Objective Functions

in order to minimize that error and thereby achieve more accungtet. However, error
functions do not always decrease monotonically with the classificatror, which is the

real goal of the learner.

Classification ofN classes is often viewed as a regression problem witN-ealued
response, with a target value of 1 in tﬁbposition if the observation falls in classand

0 otherwise (LeBlanc & Tibshirani, 1993). The values of zero ancdamée considered
idealized or hard target values. However, in practice there isason why class targets

must take on these values.

To generalize well, a network must be trained using a proper tivgefunction.
Backpropagation training often uses an objective function that emmsunaaking
weights larger in an attempt to output a value approaching haetgsaf O or 141 for
the htan function). Using hard targets is a naive way of training aedtes several
practical problems. Different portions of the data are |lehatedifferent times during
training, and using hard targets not only often leads to premateight saturation,
making it harder and slower to learn patterns that have yet leabeed, but also forces
the learner to overfit on patterns that have already beenelkar One conventional
approach uses “softer” targets like 0.1 and 0.9. This presents seles® solution but

still suffers from overfitting.

Rankprop (Caruana, Baluja, & Mitchell, 1996) provides an alternative methoaining

with hard target values and empirically shows that it imprgeseralization. Rankprop

12
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Chapter 2. Classification-based Objective Functions

records the output of the learner for each training pattern. lsttrémthe patterns in the
training set based on class, then according to output values. Thok, & the patterns
consistent with the current model is developed and used to defirergkéalues on the
next epoch. The idea behind Rankprop is that in the case of complexeaorgolutions
a simpler, less nonlinear function is provided to learn instead. Hudting simpler
model often generalizes better. CB1 also provides a simplerduarfcti the network to

learn that leads to better generalization.

2.1 Conventional objective functions

The validity of using common differentiable measures like SSEnaobjective function
to minimize error relies on the assumption that pattern outputsffset by inherent
gaussian noise, being normally distributed about a cluster nféanmapproximating the
function of an arbitrary signal this presumption often holds. Howévisrassumption is
invalid for classification tasks, where assigned real-valuegktavectors are arbitrary
values used to represent class labels. This suggests thatewtiremetrics are more

suited to classification problems.

In (LeCun, Denker, & Solla, 1990), a study of tdegits problem revealed that
heuristically reducing the number of network parameters bgctorf of two increased
training set MSE by a factor of ten, while generalization MiSffeased by only 50%,
and test set classification error actually decreased. Tbgests that minimizing MSE
might not be a reliable objective function for complex clasgificatasks. This also

implies that comparison studies showing “improvements” through a reduct

13
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Chapter 2. Classification-based Objective Functions

SSE/MSE on classification tasks are not significant unleassification accuracy

increases likewise.

Cross-entropy (CE) assumes idealized class outputs (i.eet tealges of zero or one for
a sigmoid activation) rather than noisy outputs as does SSE (Mitd88i7) and is
therefore more appropriate to classification problems. The fitasigin figure-of-merit
(CFM) objective function was introduced in (Hampshire 1, 1990) faarnimg
classification problems when it was shown that SSE and CE em®rsot necessarily
correlated with classification accuracy. CFM separtitessalues of network outputs by
as large a range as possible such that error minimizatiorom®tonic with increasing
classification accuracy. Like SSE and CE, this metric elagas weight saturation,

which is often indicative of overfitting and detrimental to generalizationtl@gr1998).

2.2 Classification-based objective functions

Generalizing well, not minimizing error with respect to an dbjedfunction, is the goal
of learning. LeCun’digits study mentioned above illustrates how objective functions
can inaccurately reflect how well a problem has been learnedceHéhe objective
function chosen for learning should approximate the true goal dédéineer as closely as
possible. CB1 more directly portrays how well the network haséeato classify the

training patterns.

Similar to CFM, CB1 also attempts to increase the range batwatput activations.

However, CB1 widens the range between outputs only when theresdickd®n error.

14
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Chapter 2. Classification-based Objective Functions

When a misclassification is made, error is backpropagated anty thiose outputs that
are credited with producing the error. Observe that thistefédy narrows the gap
between outputs, as they are transposed with respect to theiotraldd-1 target values.
This approach allows the network to relax more conservatively insoliion and

discourages weight saturation and overfitting.

3 CB1: A Classification-based Error Heuristic

There is an inherent tradeoff between fitting the (limitedintng data sample perfectly
and generalizing accurately on the entire population (see SectionThd)e are several
possible ways to process the network’s output vector in calculatirggrar signal for
backpropagation to fit the data properly. A simple variant involves nindifthe
objective function by providing a maximum error tolerance threstigld, which is the
smallest absolute output error to be backpropagated. In other wordsdgiyenO, a
target valuet;, and network outputy, no network update occurs if the absolute ertor |
0 | <dmax This threshold is arbitrarily chosen to represent a point ahvehattern has
been sufficiently approximated. With an error threshold, the netvgopeimitted to
converge with smaller weights (Schiffmann, Joost, & Werner, 1993dre Mynamic
approaches, such as Rankprop (Caruana, 1995), avoid the use of pre-defidéd “har

targets, setting ranked “soft” target values for the training patteatsepoch.

CB1, introduced here, considers the entire output vector of the netwdeketonine the

error of each output node. For each pattern considered, CB1 backpropagates
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through the network only on misclassified patterns. As this techfogces networks to
learn only when explicit evidence is presented that their stata detriment to
classification accuracy, we have called the approach ctagsifi-based training. Like
Rankprop, CB1 avoids the use of hard target values. However, rather dkahngy soft
targets, it avoids the use of predetermined target values akogefhe objective of CB
training is not to minimize the error between target and output values, but rather to
produce output values that can be accurately translated to cdassifications. With

CB training, smaller weights near zero can provide an addeptsolution for
classification tasks. Keeping weights smaller avoids problemssed by weight

saturation.

Network weights are updated during CB training exclusively toimize classification
error. When the network misclassifies a pattern, credit foetie is assigned to two
sources. The first is the set of output nodes with higher output values than the éagyet cl
node (resulting in the system outputting the wrong class value).sédoand is the target
output node itself, which outputs a value too low to produce the coresdifedation.

This approach is formalized as follows.

3.1 CB1 error function

Let N be the number of output nodes in a network. datsignate the activation value of
a node (& o< 1 for sigmoid). Leby be the activation value of thhe output node in the
network (1< k< N). LetT designate the target class for the current pattermasignify

the class label of thid" output node. For target output nodagss+ T, and for non-target
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output nodesgy # T. Non-target output nodes are caltmmmpetitors Often, class labels
are indicated in training by setting the target value of one output node high amgl thetti
rest low. This restriction is not made here, as it is posBblmore than one output node
to act as a target node for a class label in the genesal ddowever, for the remaining
discussion standard 1-bftarget designations are assumed.

Let otmax denote the value of the highest-outputting target output node, or formally
Let 0-tmax denote the value of the competitor outputting the highest

O-tmax=mMax {ox:cz T}

The errorg, back-propagated from thé& output node is then defined as

0~T max Ok if Ck =T and(0~T max 2 OTmax)
&= 101 —O¢  if ¢ #T and(o, 2 0;,.) (1)
0 otherwise

The error (1) represented in closed form is

& = (O~Tmax _Ok)l(ck =T and(O~TmaX 2 onax)) + (OTmaX _Ok)I(Ck £T and(ok 2 OTmax) )
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where | is the indicator or characteristic functiorhus, a target output generates an error
signal only if there is some competitor with an @&qur higher value thaommay Signaling

a potential misclassification. Non-target outpikswise generate an error signal only if
they have an output equal or higher tlapay indicating they are responsible for the
misclassification. The intuitive rationale behitids is that if the error is continually

reduced on misclassified patterns, they will evaliytbe classified correctly.

The error delta used for backpropagation is

A =& f (o)

wheref ' (0y) is the standard error gradient, which is

f (o) =ok(1-0x)

for a sigmoid squashing function, and can be rem@reoutput nodes when using cross-

entropy (Joost & Schiffmann, 1998).

To illustrate how CB training works, consider aetticlass problem. For a particular
pattern, assume that the third class is the targetditionally, this translates into a target
vector of (0, 0, 1). Assume that on this patterB;output network outputs (0.1, 0.2, 0.4).

While the third output (the target) has substarstiplared error (0.36), the first two output
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values (the competitors) are sufficiently low, eglowso that it is possible to extract the
correct classification (the third class is choserces its value is highest). Since the

pattern is classified correctly, the network pareareremain unchanged.

Only if one of the competitors outputs a higherueathan the target would a non-zero
error signal be backpropagated from any of thewutpdes. In the case that the network
outputs (0.1, 0.4, 0.3), both the second and thirtgut nodes would backpropagate error:
the second since it outputs higher than the targde, and the third, since a competitor
outputs a higher value than it. The error sigaaat at the minimum amount possible to

produce a correct classification.

3.2 Advantages of CB training

When a pattern is already classified correctlycifuy output values closer to O or 1 often
results in weight saturation and overfitting. Theedlessly increases network variance
(sensitivity to the training data), increasing seléisation error on test data. Training
without idealized or predetermined target outputswa a pattern to be potentially
“learned” with any target node output, providingmgeetitors output lower values. This

insight is the driving motivation behind CB traigirwhich avoids this practice.

CB training of a network proceeds at a differentgpthan optimizing SSE or CE as the
objective function. Weights are updated only tiglonecessity. Backpropagating a non-
zero error signal frononly the outputs that directly contribute to classtiima error

results in considerably fewer weight updates oVefabserve that this number is
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proportional to the classification accuracy) aridvas the model to relax more gradually
into a solution. CB training learns only as mushrequired to remove misclassifications
and thereby discourages overfitting. This approacheminiscent of training with an
error threshold; however, whereas a fixed erragghold causes training to stop at a pre-
specified point, meaning weights must increase neagnitude sufficient to achieve this
threshold, CB training dynamically halts learnirtgleefirst possible pointhat correctly
classifies a training pattern. This can be considlean implementation of dynamic

error thresholdthat is unique to each training pattern and netvetalke.

3.3 Increasing the margin with CB training

Figure 1 illustrates how sample variance in théning set can influence the decision
surface arrived at using SSE and CB1 error funsti@m a two-class problem.
Overfitting is minimized in CB training because l@rs (noisy patterns) have minimal
detrimental impact to the decision surface’s acoyralhis is because the target output is
only required to output a value negligibly highkan the highest competitor before the
training process stops updating the network pararsetin Figure 1b, the CB1 decision
surface remains next to a noisy pattern. Thig isointrast to conventional SSE training,
where hard target values of 0 and 1 require pusthieglecision surface as far away from
all training points as possible, including noisytliews (see Figure 1la). Hence, test
patterns in the area near the question mark faliext to an outlier of the competing
class have a better chance of being correctly iGledsand network variance is

substantially reduced.
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Figure 1. Typical decision boundaries for SSE networks (aGd31 networks without an
error margin (c), and CB1 with a small error margird). CB1 induces a boundary more

robust to noisy patterns.

When CB training, it is common for the highest auting node in the network, which
we will call omax to output a value only slightly higher than tlee@nd-highest-outputting
node (see Figure 2). This is true for correcthssified patterns (those above 0 in Figure
2), and also for misclassified ones (those below Ohis means that most training
patterns remain physically close to the decisiorfase throughout training. In the
absence of outliers, then, one would expect theisteuto arrive at a decision surface
similar to those portrayed in Figure 1c. Accordingthe application this might not be

desirable.
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Figure 2. Network output error margin after CB training O€Rdata set. Values of
output nodes are typically very close togetherngatrly all patterns are correctly

classified.

An error marginy, can be introduced during training that servea asnfidence buffer
between the outputs of target and competitor nodéee value for can range from -1
to +1 under the sigmoid function. For no erromsigto be backpropagated from the
target output, an error margin requires tbakn.x + 4 < Omax Conversely, for a
competing nodd with outputoy, the inequalityox < Ormax - &£ must be satisfied for no

error signal to be backpropagated fremThis augmentation to (1) is presented as

MINQO_t e * 40, 1) if ¢ =T and(0_y o + 42 Oy )
& = Max@; . — 4 —0,,-1) if ¢, ZT and(o, 2 0;,,, — ) (2)
0 otherwise
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where min(,1) and max(0) enforce the [-1,1] error range of the logigtinction. In this
way, CB1 with a smalj (e.g. 0.1) approximates the SSE solution and thegim is

maximized even in the absence of outliers (seer€ifyd).

During the training process, the value/otan be altered and might even be negative to
begin with, not expressly requiring correct classaiion at first. This gives the network
time to configure its parameters in an even moiahibited fashion. Thew is increased

to an interval sufficient to account for the vadanthat appears in the domain data,
allowing for robust generalization. The valueotan also be decreased, and remain
negative as training is concluded to account fasyhoutliers. A preliminary analysis of

updatingu during training has shown promise (Rimer & Maran2004).

Including a margin also decreases the amount ag4dication oscillation” that occurs as
outputs react to one another. Wher 0, patterns remain close to the decision surface
during training. As training proceeds and the siea surface shifts around, patterns
frequently slide back to the wrong side of the sieci surface. Introducing a small,
positive ¢ requires patterns to be situated further away ftbendecision surface and
reduces the incidence of renewed misclassificatleading to quicker convergence.
Observe that at the extreme valuetof 1, CB1 reverts to standard SSE training, with

target values of 1.0 and 0.0 required for all pesiand negative classes, respectively.
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4 Experiments and Analysis

Neural networks were trained through backpropagatptimizing SSE and CE, and
through CB1 to explore empirical advantages of @ihing techniques. These models
include:
* A single-output network on two-class problems (pesipatterns are assigned a
target value of 1.0, negative patterns are assigriadyet value of 0.0)
» A singleN-output network (one output per class on multi€lasoblems)

* N independent single-output networks on multi-claslems (one per class)

Experiments were conducted over a variety of dats sith varying characteristics,
differing by:

» Size of data set (150 instances to half a million)

* Number of features (two to hundreds)

* Number of labeled data classes (two to forty-seven)

» Complexity of data distribution (nearly linearlypsgable to highly complex)

Problems were drawn from the UC Irvine Machine besg Database Repository (UCI
MLR) (Blake & Merz, 1998) and from a large databa$emachine printed characters
gathered for OCR. This provides a vantage poorfihich to evaluate the robustness

of CBL1.
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In empirical comparisons among different learningetmods, appropriate training
parameters were determined to optimize each mdetal.further conceptual analysis and
illustration of the behavior of these systems, ltssaf experiments using a range of

parameters are provided.

4.1 Data sets

The performance of SSE versus CB training has bgaluated on an OCR data corpus
(OCR consisting of roughly 370,000 alphanumeric chinapatterns and 47 symbolic
classes, partitioned into 277,000 training patteBis000 holdout set patterns, and 62,000
test patterns. Results on this data set were firessented in (Rimer, Andersen, &

Martinez, 2001a).

Two network topologies were evaluated for learf@@R a singleN-output network and

N single-output networks\(= 47 forOCR.

Additionally, eight well-known classification pradshs were selected from the UCI

MLR. Descriptions of the selected data sets atedias follows:

ann — 7200 instances with 15 binary and 6 continuatisbates in 3
classes. The task is to determine whether a patérred to the clinic is

hypothyroid.
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bcw — 699 instances with 9 linear attributes in 2 st@s The task is to

detect the presence of malignant versus benigrsbcaacer.

ionosphere— 351 instances with 34 numeric attributes indssés. This

data set classifies the presence of free elecinotie ionosphere.

iris — 150 instances with 4 numeric attributes in 3s#s. This classic
machine learning data set classifies the specigarajus iris plants based

on physical measurements.

musk2 — 6598 instances with 166 continuous attribute® atasses. The

task is to predict whether new molecules will besksuor non-musks.

pima — 768 instances with 8 numeric attributes in 2ss#s. The
predictive class in this data set is whether orthettested individual has

diabetes.

sonar— 208 instances with 60 continuous attributes ala8ses. The task
is to discriminate between sonar signals bouncéd aifetal cylinder and

those bounced off a roughly cylindrical rock.

wine — 178 instances with 13 continuous attributes iolé&sses. The
attributes give various parts of the chemical cositpon of the wine and

the task is to determine the wine’s origin.

A single network with one output per class was usdéarn these problems. Results on

UCI MLR problems were averaged using 10-fold dfliexticross-validation.
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4.2 Training parameters

Experiments were performed comparing the SSE, @, @B1 objective functions.

Fully connected feed-forward networks with a sindfielden layer trained through
standard on-line backpropagation were used. lax@eriments, weights were initialized
to uniform random values in the range [-0.1,0.0tworks trained to optimize SSE and

CE used an error tolerance threshalg., described in Section 2) of 0.1.

Feature values (both nominal and continuous) werenalized between zero and one.
Training patterns were randomly shuffled beforeheapoch. For each simulation, a
random seed for network weight initialization arattprn shuffling was used across all

networks tested.

Network learning parameters dDCR for each error function have been extensively
optimized over the course of hundreds of empiremaluations, comprised of tests of
networks with topologies of one to three hidderefayten to five hundred hidden nodes
per layer, learning rates from 0.01 to 0.5, and mwa@iom from 0.0 to 0.99. We
performed two sets of experiments O&CR One tested multi-task learning (MTL), or
using a single network with multiple output nodasd the other used a separate network
to learn each problem class. Pattern classificatvas determined bwinner-take-all

(the class of the highest outputting node is chpsarall models tested.

For experiments presented here evaluating MTLdddn layer of 128 nodes was used.

For experiments presented here training a sepaiage output node network for each
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class label, each network has a single hidden lafy82 hidden nodes. The learning rate
was 0.1 and momentum was 0.7. Training was halfied 50 epochs (nearly 14 million
patterns) of seeing no improvement in accuracyhenhbldout set. The model selected
for testing was the one with the best holdout $ststfication accuracy. Although we
only present empirical results for this combinatafnparameter values, it is noted that
relative accuracies among the error functions wgieal and comparable over the range

of learning parameters, network sizes and toposogisted.

On UCI MLR data sets, network size was optimizedhtaximize generalization for each
problem and error function. Optimized numbers idfden nodes used for learning UCI
MLR data sets are listed in Table 1. Learning vesis 0.1 and momentum was 0.5 for all
UCI MLR problems. Training continued until theitiag set was successfully learned or
until holdout error ceased to decrease for 500 emutsrze epochs. The model selected

for testing was the one with the best holdout Betsification accuracy.

Table 1. Network architectures on MLR problems.

The number of input, hidden, and output nodes pawrork is shown.

Data set SSE CE CB1
Network | Network | Network
ann 21-30-3 21-30-3 21-30-3
bcw 9-15-2 9-25-2 9-10-2
lonosphere 34-7-2 34-9-2 34-9-2
irs 4-1-3 4-1-3 4-1-3
musk2 166-5-2 166-5-2 166-5-2
pima 8-8-2 8-8-2 8-16-2
sonar 60-15-2 60-5-2 60-15-2
wine 13-16-3 13-8-3 13-16-3
28
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4.3 Results

Empirical results o©CRand the UCI MLR data sets are presented in thewoig sub-

sections.

4.3.1 OCR data set

Tables 2 and 3 display the results of standard &®ECE backpropagation versus CB1
on OCR Train % and Test %are the training and test set accuracy on the teelec
network model in percent, averaged over five trggnruns. How well each model
generalizes is indicated byest % / Train % Train MSEand Test MSEare the mean

squared errors for the training and test sets enefpoch from which this model was

chosen. Best values are printed in bold face.

Table 2. Results orOCRwith N single-output node networks.

Error function [Train % Test % | Test %/Train % | Train MSE | Test MSE
SSE 99.28 97.86 .9857 .0047 .0092
CE 99.37 98.10 .9872 .0094 .0110
CB1 (#=0.05) 99.61 99.11 .9950 .1830 .2410
Table 3. Results orOCRwith oneN-output node network.
Error function [Train % Test % [ Test %/Train % | Train MSE | Test MSE
SSE 98.79 98.62 .9983 .0274 .0313
CE 99.09 98.91 .9982 .0160 .0221
CB1 (u=0) 99.15 98.96 9981 .1594 .1800
CB1 w=0.1) 99.38 99.26 .9988 .0992 .0968

These tests demonstrate that multi-task learninQ©R generalizes better than using a
separate network to learn each problem class visth &d CE objective functions. Even

though training accuracy is lower on the SSE and r@Hti-output networks than
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multiple networks, generalization (i.e., test aecyr / train accuracy) is improved.
Observe that with a single multiple-output netwddst set accuracy is within a fraction
of one percent of training set accuracy using ahyhe tested error functions. This
occurs since little overfitting can occur in thigesnetwork when attempting to learn all
classes simultaneously. Worse generalization vilsgrged using networks with more
hidden nodes. When training a separate networkdch class, each network has much
greater potential to overfit since there are mawyemetwork parameters. This behavior

is exhibited to lesser degree with CB training.

Optimizing CE onOCR trains and generalizes better than SSE, and CBfbrpes

significantly better than both of these (p < 0.0008etwork models generated with CB1
also have improved generalization. Observe that 6& a much higher MSE than the
other methods, yet overfitting is reduced and gaieation is improved. This is an

important point that is discussed further in Setbo

Generalization with the best CB1 model is 0.73%atethan the best model trained with
SSE and 0.53% greater that the best CE-trained In@tesidering only multiple-output
networks, error drops from 1.38% for SSE and 1.08¢&E to 0.74% for CB1, increases
in accuracy of 0.64% and 0.35%, respectively (p.8001). Considering only the
multiple single-output network models, error drdpsm 2.14% with SSE and 1.90%
with CE to 0.89% with CB1, increases in accurac$.@6% and 1.01%, respectively (p <

0.0001).
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4.3.2 UCI MLR data sets

Table 4 lists the results of a naive Bayes classthken from (Zarndt, 1995), standard
SSE and CE backpropagation, and CB1 with SSE ancr@i updates (whether the
error gradient, discussed in Section 3.19(0) or 1, respectively) on eight UCI MLR

classification problems. Results were gatheredgudO-fold stratified cross validation

and averaged over thirty randomly-initialized tragiruns.

The first value in each cell is the average clasibn accuracy of the selected model.
The second value is the standard deviation oveual. The best generalization for each
problem is bolded and the second best value igigatl. An asterisk indicates a
confidence within p < 0.05 that the highest accyrec significantly better than the
second highest. The last two columns indicatalifierence in value between CB1 (with
SSE or CE error gradient) and SSE and CE optinozatiHere, a higher first value in
each cell indicates greater improvement, and a rlaseeond value indicates smaller

standard deviation.
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Table 4. Results on selected data sets from UCI MLR u&rdpld stratified cross-
validation. Best values are shown in bold and seddxest in italics. Statistical

significance of p < 0.05 of the most accurate atgor is signified by an asterisk.

Data set Bayes| SSE CE CcB1 CcB1 CB1 SSE | CB1 CE —
SSE CE — SSE CE
ann 99.7 |98.25 |98.33 | 97.62 98.76 | -0.63 0.43
0.1 0.54 0.53 | 0.47 0.51 -0.07 -0.02
bcw 93.6 |96.96 |97.06 |97.22 97.3¢° | 0.26 0.30
3.8 2.01 1.81 |2.01 1.81 0.0 0.0
ionosphere | 85.5 | 89.00 | 90.80 | 90.60 90.88 | 1.60 0.08
4.9 4.72 464 |3.75 3.87 -0.97 -0.77
iris 94.7 93.83 | 94.37 | 9547 95.37* | 1.64 2.00
6.9 5.68 587 |5.31 5.25 -0.37 -0.62
musk?2 97.1 |99.06 |98.56 |99.15 99.27 | 0.09 0.71
0.7 0.37 0.62 |0.36 0.29 -0.01 -0.33
pima 72.2 |76.26 |76.11 | 76.69* 76.82 |0.43 0.71
6.9 424 1436 |3.43 6.46 -0.81 2.10
sonar 73.1 |76.06 | 78.87 |80.77 81.92 |4.71 3.05
11.3 9.37 9.03 |9.02 8.60 -0.35 -0.43
wine 94.4 |96.29 |96.74 |98.3F 97.19 |2.02 0.45
5.9 445 413 |3.49 3.47 -0.96 -0.66
Average 88.79 |90.69 |91.35 |91.97 92.20 |1.28 0.85
5.06 3.92 3.87 |3.48 3.79 -0.44 -0.08

The average increase in classification accuracfras1 90.69% for SSE training to
91.97% for CB1 with SSE error gradient, a 1.28%rel@se in error (significant to p <
0.035). Using CB1 with a CE error gradient dem@tetl a 0.85% increase in accuracy
over CE training, from 91.35% to 92.20%. An ovkdalcrease in standard deviation also
indicates that CB training is more robust to iniparameter values and pattern variance
then SSE and CE optimization. This supports th@othesis that weight saturation and

overfit is reduced and generalization is improvgdiB training.
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5 Discussion

Standard backpropagation and other gradient detemming techniques do not consider
or attempt to maximize the number of correctly sifeesd training patterns (Duda, Hart,
& Stork, 2001). CB1 incorporates a more directimination of misclassified patterns in

gradient descent procedures by reducing error bnmisclassified patterns.

Since CB1 does not train using ideal target valies SSE and CE, MSE drops very
slightly as training accuracy is improved (see Feg8a). This is in contrast to the strong,
immediate drop in MSE illustrative of standard S&&imization (see Figure 3b). CE
displays similar behavior to SSE optimization bst omitted from the following

discussion for brevity.
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Figure 3a. Classification accuracy and MSE during CBL1 training

MSE decreases very slowly during training.
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Figure 3b. Classification accuracy and MSE during SSE optitiora

MSE decreases quickly during training.
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In Figure 3a, rather than converging to zero, M8mains just under 0.25 as training
progresses witu=0. With p=0.1, MSE decreases to around 0.15. A large MSE is
incurred by pattern outputs being very far awayrfrihe conventional 0-1 target values.
Observe that a MSE of 0.25 is equivalent to a nmexaor of 0.5, which illustrates that
output activations are close to 0.5 on averageautiirout training. This indicates that the
weights for these outputs are close to zero. $hggests that CB training performs a
fundamentally different search in feature spaca tstandard SSE/CE optimization. It
descends towards different minima and convergesféature location physically distant
from SSE/CE solutions. This also indicates thghfaccuracy solutions exist where SSE
are CE are about as high as when training starts reetwork initialized to small random

weights.

Figures 4-6 give insight into the behavior of thetwork during the learning process
using four error functions. The surface plot shamsistogram of the values output by
the network output nodes on the training pattexesyeepoch (Figure 4) and every tenth
training epoch (Figures 5 and 6). Figures 4, 5& %im show learning minimizing SSE,
and Figures 6a and 6b show behavior during CBhitrgi The results shown here are

for thebcwdata set, but such behavior is generally represeataf all data sets tested.

In Figure 4, it can be seen that SSE training ®rtdee network to output values
approaching 0 and 1 in fewer than ten epochss ribted that even after the first epoch,

network outputs are already completely separatedestohct. Using a@lnax of 0.1 reduces
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this tendency somewhat. Observe the flattenedsplakpositive patterns in Figure 5b

that do not exist in 5a.

CB training produces a starkly different behavidm. Figure 6a, it can be observed that
all patterns output around 0.5 during the entir@ning process. In Figure 6b,
incorporating a confidence margin @& 0.1 widens the spread of output values, causing

the output clusters of the two classes to visiphit apart as training progresses.

Output Trace, SSE, d o =0

Figure 4. Network output trace SSE optimization lmew (first ten epochs).

Weight saturation occurs after only a few traingppchs.

36

www.manharaa.com



Chapter 2. Classification-based Objective Functions

Output Trace, SSE, d 0z =0 (a)
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Qutput Trace, SSE, dnax = 0.1 (b)

# Samples

Figure 5. Network output trace during SSE optimizationbzmv.

Network weights become quickly saturated duringqing.
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# Samples
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Qutput Trace, CB Training, #=0
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Figure 6. Network output trace during CB training bow.

Network weights do not become saturated duringitrgi
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5.1 Empirical effects of an error margin

Figure 7 depicts the results of training with CBilbewwith values foru ranging from 0
to 0.9. Each value bar shown is the averaged ifitadé®n accuracy with standard

deviation using 10-fold stratified cross validation
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93

92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7. 10-fold CV results for CB training dscwwith g

Small, non-zero values fartypically demonstrate the best generalization.

This shows that CBL1 is fairly robust to the selmttof 1+ Values foru > 0 cause the
decision surface to be more removed from proxiraat patterns than whem= 0 and
have better generalization. Values jorcloser to O show the most improvement and
values closer to 1 cause CB1 to revert proportlgrtal the behavior of standard SSE

minimization. (Note that the accuracies shownger 1.0 do not match the accuracy for
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SSE training in Table 4 because the accuraciesleT4 are based on roughly optimized
parameters for each error function, and CB anddstahtraining have different optimal

learning parameters.)

5.2 Effect of SSE on output values

Following a training run o®CRtraining to minimize SSE, winning network outputs o
the test set were distributed as shown on the ikbgaic scale in Figure 8. The network
outputs were very close to 1.0 on the majoritynef patterns. Only 2-3% of the patterns
lie close to where the decision surface is locdexblicitly at 0.5). The weights have

grown in magnitude to the point that the dividimgnsoidal surface is very sharp.
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Figure 8. Network outputs o®CRtest set after SSE minimization are typically elts

1, indicative of large weights.
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\—Correct — Incorrect\
10000
a /\
< 1000
(&)
(7]
(@)]
o
~ 100
(7]
c
5 \
=
6_5 10
3
1 LI N B B L
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Top Output

Figure 9. Network outputs o®@CRtest set after CB1 training.

Network weights are typically very small.

5.3 Effect of CB training on output values

CB1 training produces a final output distributionitg unlike that seen in Figure 8.
When networks only perform weight updates to prévarsclassification, instead of
pushing the pattern outputs to one end of the augmge or the other, the vast majority
remains spread out just slightly above the decidionndary (see Figure 9). Pattern
output distribution is roughly gaussian, reflectiag actual gaussian data distribution
(i.e., gaussian noise in t@CR input features). There is a larger output variatinae
appears from SSE optimization but with only a fiattof the classification error. This

suggests that the decision surface is much smoatherthat network weights are not
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saturated. Misclassified patterns usually haveustbelow 0.5 and are lower than the

output for correctly classified patterns in the ondy of cases.

5.4 Network complexity

At first, it seems counter-intuitive that networkasitputting only around 0.5 will
generalize so well. Ordinarily, training networkgether allows a classifier to become
more complex, prone to overfitting. However, itshaeen shown that the number of
nodes in a network is not as influential as tegnitudeof the weights (Bartlett, 1998).
The topology, rather, serves more as a mechaniatrahds itself to solving of certain
problems, while the weights represent how tightlg ihetwork has fit itself to the
(admittedly incomplete) training data distributioNetwork complexity is further defined
(Wang, Venkatesh, & Judd, 1994) as the number @frpaters and theapacity to which
they are used in learningdi.e., their magnitude). The authors show howwoeit

complexity is a generalization of Akaike’s Infornmat Criterion, which reveals

The generalization error of a network is affected only by the number of
parameters but also by the degree to which eaclamater is actually

used in the learning process.

That is, it is best to make minimake of the capacity of the network for encoding the
information provided by the learning patterns (Wavignkatesh, & Judd, 1994). In light
of this, it is understandable why training (ovesbmplex) networks using early stopping,

weight decay or CB training, which allow networks donverge with smaller weights
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than normal, perform well. Although a network ntegve more parameters than strictly
necessary, CB1 avoids superfluous weight updates whtterns are correctly classified.
This results in lower network complexity. Hendw®e possibility of overfitting is reduced

in the training process.

The networks used in tHeCRexperiments (1 for each class) had 64 inputs, dddm
nodes and 1 output node, with 2080 weight paramépdus 33 bias weights). The rows
of Table 5 list the average magnitude of the waighta network initialized with uniform
random weights in the range [-0.3,0.3], after staddraining, and after CB training,
respectively. The columns denote the average ramniof the bias weight on the
hidden nodes, bias on the output node, averagehtvémm input to hidden node, and
from hidden to output node, respectively. The Istweeight magnitudes are bolded.
The CB network has weights that are roughly twdoiar times larger than the initial
random values, while SSE and CE training producigiwe from ten to twenty times
larger. The CB network is a simpler solution thdre networks produced by

backpropagation training optimizing SSE or CE.

Table 5.Average final network weight magnitudes.

Method | Hidden | Output | Hidden | Output
Bias Bias Weight | Weight
Initial 0.16 0.15 0.15 0.15
SSE 2.21 4.66 1.27 6.25
CE 2.56 4.95 1.43 4.16
CB1 0.56 0.02 0.31 0.74
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5.5 Multi-task learning with CB

Common training methods for learning multiple tasksolve training multiple networks
separately, one for each task. However, learnegstubparts of a complex problem
separately may not be a good idea. Independentnigaof domain-specific experts is
only marginally beneficial to the system as a whdulti-task learning(MTL), learning
multiple problems simultaneously with a single nplé-output network, is described by
Caruana (1993; 1995; 1996; 1997). Caruana shows learning multiple tasks in
conjunction helps to avoid local minima and imprayeneralization. MTL performs

better (learning tasks simultaneously) than legrtaisks separately (Caruana, 1993).

There are several reasons why MTL improves on sitagk learning (STL). Using
single-output networks to learn each class in ttedlpm ensures each class is learned
separately. Learning classes separately mighivadksier analysis of solutions, whereas
deciphering the meaning of network weights in atradtput network is very difficult.
However, there are advantages to CB training uaisghgle multi-output network over
separate single-output networks. Training a singdéwork takes advantage of the
benefits of MTL. Where problem hypotheses overlapsingle network can “reuse”
nodes by taking advantage of redundant featuréss produces a more compact solution
than having to relearn redundant features in separ@works. In experiments on the
OCRset 47 networks were trained. Each network hadix82x1 architecture, (plus bias)
yielding 2113 weight parameters in each networkall, the model contains 2113 x 47 =
99,311 weights, whereas the best single networkahéx256x47 topology (plus bias).

This equals 16640 + 12079 = 28,719 weights, a temluin size of nearly three-and-a-
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half times. The practical implications of this d@nat not only is memory conserved, but

classification speed is increased as well.

Caruana (1995) states one of the disadvantagesTafidthat, since tasks are learned at
different times during training, it is difficult t&know when to stop training. When
training is stopped early, some tasks might noehasen learned and generalization is
often impaired as a result. Caruana’s solutido tsain the network until all tasks appear
to be overfitting, or to take a separate snapshtiteonetwork for each class, at the point
where its validation accuracy is highest. Howevakjng several snapshots makes the
solution much more unwieldy, and although the shapss taken at the point where
accuracy is highest, there is no guarantee thaffitivey has not already occurred in

some parbf the space for that class.

CB training solves both problems by naturally stogptraining on tasks as they are
learned, both within classes and among them. Adlss in two ways: the solution can be
kept small (using a single network), and overfgtis discouraged on two levels, both
external to learning a class (overfitting a clagsduse other classes have yet to be
learned sufficiently) and internal to it (overfittj on localized regions of a class because

other regions have yet to be learned).

CB training of multiple networks goes a step beydfitl.. Note that in Section 4.3.1,
the bestOCR test accuracy was obtained using multiple networks appears their

increased computational ability (more network patars) over the monolithic model
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enables them to be used as needed to find a bettgron than with a single multi-output
network, while CB training discourages abuse ofitlteeased potential of the system to
overfit. In addition to having specialized netwsikarning individual tasks at the same
time, CB explicitly shares relevant information argothe networks, in the form of

output values, during training to coordinate thearning process.

5.6 Computational Cost

CB1 requires an @ search through tha network outputs to determine the highest
target and competitor values. However, this addii overhead to the learning
algorithm is negligible compared to the computatiequirements of Gf) for feed-
forwarding a pattern vector and ixf) for backpropagation, wheiieis the number of
inputs andh is the number of hidden nodes. In fact, CB1 s&@sn) time by omitting
the error backpropagation step over correctly diadgspatterns. The number of epochs

required to converge is similar for CB1 and coni@rdl backpropagation training.

6 Considerations in Neural Network Training using (B1

In this section, several issues are enumeratedrtbat be considered when designing an
effective neural network backpropagation learrtdow each of these issues is dealt with,
to some extent, has a significant effect on geizatan. How CB training deals with

these issues is discussed.
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6.1 Network Complexity

If it is possible to reduce network complexity vattt reducing training error, then it is
expected that generalization accuracy will improvBletwork complexity is defined
(Wang, Venkatesh, & Judd, 1994) as the number @rpaters and the capacity to which
they are used in learning (i.e., their magnitud&network with a few large weights may
effectively be more complex than a network withraager number of small weights.
Hence, complexity can be reduced not only througmipg parameters, but also by
reducing their values. A learning algorithm themsat preserving small weights during
training can aid in improving generalization. Oagample of this is performing
regularization such as weight decay (Werbos, 1988)ch serves to weaken overly
strong or saturated connections and in effect remormused network connections.
However, weight decay serves more as a recovehyimgae to repair the damage caused
by minimizing the error function as weights tendaod saturation, rather than providing
a heuristic that specifically aims at small-weigbtutions. CB1 actively attempts to find

good solutions with weights remaining as small @ssfble to avoid saturation.

6.2 Early Stopping

Early stopping strategies (Wang, Venkatesh, & Ju@®94) commonly utilize network
architectures that have the potential of being lgveomplex. Larger network
architectures are likely to converge to a lowemntray error, but tend to produce higher
error on test patterns. In order to avoid thislyestopping strategies try to determine

when the problem has been learned sufficiently vioell not yet overfit (Caruana, 2000).
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(Wang, Venkatesh, & Judd, 1994) shows that stopf@agning before the global error
minimum has the effect of network size selectidrhis can be accomplished through a
number of methods, such as considering the accufaayalidation, or holdout, set, and
stopping training when the performance on the haldet begins to degrade (Andersen

& Martinez, 2001).

CB training performs an “online” form of early sfwpg. Rather than stopping training
completely when it is detected that the trainingis®eing overfit, CB1 selectively omits
training onindividual patternswhen backpropagating an error signal would noteiase

accuracy further.

6.3 Model Complexity

It is often believed that networks with too manyges of freedom generalize poorly.
This line of reasoning is based on two observati@hsthat a sufficiently large network

is able to memorize the training data if trainirmgtnues long enough, and (2) even with
early stopping approaches, it is not apparent varetbme form of overfit has occurred.
By reducing the learning capacity of such a netwiiris thereby forced to generalize as

it no longer has the capability to memorize thentrey data.

Caruana (1997, 2000) points out that in order tdop@ a proper theoretical analysis of
network capacity and generalization, the searchisteumust also be taken into account.
Gradient descent search heuristics do not giveyalbtheses an equal opportunity. The

inductive bias of standard backpropagation is &ot stith a simple hypothesis (through
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usually small, random weights) and make the hymihmore complex (by increasing

the magnitude of the weights) until the networkisidntly learns the problem.

Thus, backpropagation is biased toward hypothesds swall weights, examining
solutions with larger weights only as dictated legessity. Excess network capacity does
not necessarily hinder generalization, as learstngs as soon as possible. This stopping
point is dictated in part by the objective functioBuring the first part of training, large
networks behave like small networks. If they do cmme to a satisfactory solution, they
begin to perform less like small networks and mike mid-size networks, and so on. If
a large network is too big, early stopping proceduwill detect when generalization
begins to degrade and halt training. At this pdime larger network performs similar to
some smaller network. This means that generabzatan be less sensitive to excess
network capacity, and that using a network thabassmall can hurt generalization more

than using networks that are too large (Caruan@2y)L9

The ability to perform online per-pattern stoppirgpmbinable with standard early
stopping techniques, enables CB training to be nrofmust in its management of
excessively large networks. In empirical tests @gtimal network sizes in the
experiments above, CB1 proved to be more robustvesly large numbers of hidden

nodes than SSE and CE optimizatfon.

% See Chapter 6, Section 4.4 for published resiiks @xpanded test.

49

www.manaraa.com



Chapter 2. Classification-based Objective Functions

6.4 Overfitting

In taking all of the above issues into accountfivis typically considered to be a global
phenomenon. However, the degree of overfit cag s@nificantly throughout the input
space. (Caruana, Lawrence and Giles, 2000) shawotterly complex MLP models can
improve the approximation in regions of underfigtirwhile not significantly overfitting

in other regions. However, their discussion isitiah to function approximation tasks
and not classification problems, which are affeatec different way by bias-variance
tradeoffs (Friedman, 1997). CB training seeks toimmze overfit not only globally but

also locally by not training on patterns that dready correctly classified.

A network’s bias and variance as defined in (Geman & Bienenstock, 1992), can be
intuitively characterized as the network’s test geheralization and its sensitivity to
training data, respectively. There exists an iahetradeoff between bias and variance,

namely

The best generalization requires a compromise lEtwle conflicting
requirements of small variance and small bias.isla tradeoff between
fitting the training data too closely (high variagcand taking no notice of

it at all (high bias)(Sharkey, 1996).

Bias is the extent to which the network’s outputies from the target function (the

error), while variance is the sensitivity to theiming data sampled in affecting
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generalization (the variance of the constructedothgsis from the optimal Bayes

hypothesis). An ideal function approximation netkvbas low bias and low variance.

Friedman illustrates that low SSE bias is not ingoar for classification, and one can
reduce classification error toward the minimal (Bslyvalue by reducing variance alone
(Friedman, 1997). One way to reduce variance isdnstructing a smoother decision
surface. CB1 accomplishes this by discouragingepat from affecting the shape and
location of the decision surface more than is meglfor correct classification. SSE bias
is acceptably increased, as CB training is usedcfassification tasks, not function

approximation.

6.5 Coordinating objective function

CB training provides coordination among multiplegie-output networks, or among
output nodes in a multi-output network. CB tragitlustrates the principle dfatisficing
(Simon, 1959), where an aspiration level is spedijfsuch that once that level is met, the
corresponding solution is deemed adequate. CBitigabalances an outputsedibility,

or the exactness with which it can produce ide@etavalues for its clas®.g, reducing
SSE to zero), against itgjectability, or the risk of overfitting by doing so. A tradé-is
created between exactness in individual class taitnd the classification accuracy of
the system. An output node can satisfactorily qrenf less “ideally” with the
understanding that the effectiveness of the estistem can be improved as a result. In

relaxing the constraint of optimal credibility, tdsnt rejectability is reduced.
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7 Future Work

There are several directions that future researcktB training will take. CB training
variants will be considered for batch and mini-balearning. The effect of modifying
the error marging, in time and in space will be considered. Dynathycupdating the
value of the error margin as training progressea itraightforward extension to be
evaluated. Softprop, a learning approach combidBgd and SSE optimization during
training by means of the error margin, has showmpravement over CB1l in a
preliminary study (Rimer & Martinez, 2004) and artbugh analysis will be presented in
future work. Using a value for the error margicdbto each training instance and
intelligently updating these values as traininggpesses also shows promise. Also, it has
been observed that classification errors betwedn &fl CB trained networks are highly
uncorrelated. Ensembles combining SSE and CBetlanetworks will be analyzed with

the expectation that this will further reduce &sor.

8 Conclusion

CB training with the CB1 error function producesdeoverfit in gradient descent
backpropagation training than optimizing SSE and QEproduces simpler hypotheses
than SSE and CE, increasing the probability ofdbegeneralization. Its robustness and
superior generalization over SSE and CE backprdamegdas been demonstrated on

several applications. On UCI MLR problems, thess an average increase in accuracy
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from 90.7% for optimized SSE networks to 92.1% @B training performing 10-fold
stratified cross-validation. Similarly, there waas increase in test accuracy from 97.86%

t0 99.11% on a very large OCR data set.
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Improving Speech Recognition Learning through LazyTraining
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Abstract. Multi-layer backpropagation, like most learningg@ithms that can create
complex decision surfaces, is prone to overfittinge present a novel approach, called
lazy training for reducing the overfit in multiple-layer netwsr Lazy training
consistently reduces generalization error of o@dineural networks by more than half
on a large OCR dataset and on several real wodtdlggns from the UCI machine
learning database repository. Here, lazy traimsnglso shown to be effective in a multi-
layered adaptive learning system, reducing ther esfcan optimized backpropagation

network in a speech recognition system by 50.0%heTIDIGITS corpus.

1 Introduction

Multi-layer feed-forward neural networks trainedahgh backpropagation have received
substantial attention as robust learning modelstdsks including classification [17].
Much research has gone into improving their abildygeneralize beyond the training

data. Many factors play a role in their ability lgarn, including network topology,
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learning algorithm, and the nature of the problesimyy learned. Overfitting the training
data, caused through the use of an inapproprigéetole function, is often detrimental to
generalization. In applications such as speeabgrattion where even a small amount of

error can be unacceptable it is important to geizeras well as possible.

This work introducesword training (WT), a novel technique for training speech
recognition networks. Word training, inspired tazy training [15], implements an
objective function that seeks to directly minimizeord classification error while
discouraging overfitting. Lazy training performsgcsessfully on a large OCR dataset and
several problems selected from the UCI machineniegrdatabase repository, reducing
their average generalization error over training@mtimized networks by more than 60%
using 10-fold cross-validation [17]. An extensivebptimized, state-of-the-art
backpropagation network achieves word recognitiooreof 0.12% on the TIDIGITS
speech recognition corpus [11]. Word training perfs markedly better than optimized
standard backpropagation training, decreasing gesterror by half, from 0.12% to

0.06%.

An overview of related work and a discussion ofeghye functions are provided in
Section 2. The lazy training and the word trainahgorithms are presented in Section 3.
Experiments and results are given in Section 4alysis and discussion are in Section 5.

Conclusions and future work are presented in Se@io
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2 Related work

The speech recognition problem is very complex hasd received much attention in
machine learning literature. Many learning modwelse been developed to cope with the
difficulty of this problem. Often, neural networksve been utilized to provide a
solution. However, neural networks are prone terfitvto the training data, which is
detrimental to robust generalizationHidden Markov modelgHMMs) traditionally
perform as well or better than neural networkspaesh recognition [14]. Word training

achieves results comparable to HMMs.

2.1 Critique of current training techniques

To generalize well, a learner must have a propgectibe function. Most learning
techniques incorporate an objective function of imining sum-squared-erro(SSE).
The validity of using SSE as an objective functiimn minimize error relies on the
assumption that sample outputs are offset by imhegaussian noise, being normally
distributed about a cluster mean. For learningction approximation of an arbitrary
signal, this presumption often holds. However,s trassumption is invalid for
classification problems, where the target vectoescéass codings (i.e., arbitrary nominal

or boolean values representing designated classes).

Cross-entropy(CE) assumeslealizedclass outputs (i.e., target values of zero orfone
a sigmoid activation) [13] and is therefore morgrapriate to classification problems.

However, error values using SSE and cross-entrogye hbeen shown [9] to be
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inconsistent with ultimate sample classificatiosw@acy. That is, minimizing CE or SSE
is not necessarily correlated to high recognitiates. Numerous experiments in the
literature provide examples of networks that achikte error on the training set but fail
to achieve the best possible accuracy on test[@atd8]. This is due to a variety of
reasons, such asverfitting the data or having an incomplete representatioth@fdata
distribution in the training set. There is an irdrg tradeoff between fitting the (limited)

data sample perfectly and generalizing accuratedy the entire population.

2.2 Shortcomings of search methodologies

More fundamentally, the above objective functionsvgle mechanisms that do not
reflect the true goal of classification learnindjigh is to achieve high recognition rates
on unseen data. In [9], a monotonic objective fiam¢ theclassification figure-of-merit
(CEM), is introduced for which minimizing error r@ms consistent with increasing
classification accuracy. Networks that use the CBEM their criterion function in
phoneme recognition are introduced in [9] and femtbonsidered in [5]. They are,
however, also susceptible to overfitting. The ¢joasof how to prevent overfitting is a
subtle one. When a network has many free paramdearning is fast and also local
minima can often be avoided. On the other hanayar&s with few free parameters tend
to exhibit better generalization performance. Dateing the appropriate size network

remains an open problem [8].

The problem of overfitting has received much attemin the literature. Methods of

addressing this problem include using a holdoutt@ettop training early [20], cross-
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validation [2], node pruning [7, 8], and weight dgc[21], among others. These
techniques approach optimal solutions given thes & standard backpropagation
learning but do not consider possible enhancenterts bias itself. Node pruning seeks
to improve accuracy by simplifying network topologsather than alleviating the
problems common to larger topologies, for exampethods for overcoming problems
in the inductive bias inherent to training with kpmpagation generally involve forming
network ensembles. Ensemble techniques, suchagging and boosting [12], or
wagging[3], are more robust than single networks whendatiers among the networks

are not positively correlated.

There is evidence that the size of the weightsnetavork plays a more important role to
generalization than the number of nodes [4]. Apsanmethod of reducing overfitting is
to provide a maximum error tolerance threshalg,, which is the smallest absolute
output error to be backpropagated. In other wandsweight update occurs for a given
dmax target valuety, and network outputy, if the absolute errortf — ok | <dmax This
threshold is arbitrarily chosen to represent atpainvhich a sample has been sufficiently
approximated. With an error threshold, the netwisrgermitted to converge with much

smaller weights [19].

3 Word training method

This work addresses overfitting exhibited by pregidbackpropagation solutions by

applying lazy training a conservative form of training, to the learnipgpcess (see
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Section 3.3). Similar to CFM, it requires thateguction in error correlate to increasing
accuracy. However, CFM does not prevent weightratibn, which is often detrimental

to accuracy [4]. Lazy training only backpropagaeserror signal from output nodes that
endanger classification accuracy. This approalchvalthe model to approach a solution

more conservatively and discourages overfitting.

3.1 Phoneme training algorithm

Speech recognition is a complex problem, and adatanapproach involves simplifying
the problem by breaking it up into smaller, simpd&es. Word recognition is broken
into the simpler problem of phoneme recognitiorhe Bignal is divided into small time
slices calledramesand features derived from each frame are input tiné recognizer
(see Figure 1). The recognizer then outputs tlobalility of each phoneme being
uttered during that frame. Often, several contiguoframes are considered
simultaneously, as in the multi-layer time-delayra network in [10]. Phonemes are
identified and combined through a proper linguistiodel to derive words. However,
derived features of a speech signal are often remslyspeaker dependent. Hence, it is
difficult to achieve a satisfactorily high phonemetognition rate at each frame and

produce a reasonable solution.

Therefore, a decoder is stacked onto the phoneowgmeer to provide a more holistic
solution. The decoder receives the outputs optieneme recognizer and combines the
outputs over time to make a more educated guess abat word or phrase has been

spoken. Pairings of adjacent possible phonemesadidated or prohibited according to
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the linguistic model, and the overall most-likeggsence of phonemes is output as the
response. Additional elements such as a lexicarbeaincorporated into the decoder to
constrain possible responses to produce moreigeetl solutions. The decoder can be
made even more sophisticated to combine probabtdsatogether into entire utterances

according to a language model.

L]
TTRNALTED I}IIH Il
ey

Figure 1. Word training system with neural network and decode

Phoneme training involves presenting a series tdranices to the network. Each
utterance is divided into temporal frames and festwerived from the signal that are

input into the network. Each frame is labeled witb phoneme being spoken during that
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time. The network is often trained using backpgaten with a cross-entropy objective

function.

3.2 Lazy training paradigm

Due to the reasons stated in Section 2, a neutalonie classifier often overfits the
training data. The tendency to overfit is furthggravated because labeled data points in
this problem space are sparse. The problem is conged since phonemes blend
together, and it is problematic to label minutedislices accurately. It is therefore
desirable to incorporate a recognizer that will rveas little as possible in order to

produce the highest possible generalization acgurac

Overfitting a neural network is often equated va#turating the weights. It follows that
overfit is reduced by letting the weights be aslsasmpossible in the solution. This ideal

can be approached through the following method.

For each frame considered by the recognizer duraiging, only those outputs that are
credited with classification errors are updatedbdigh backpropagation. The result is
training without idealized target outputs of O dndroviding a learning mechanism that
is reminiscent of constraint satisfaction and m@ioément learning, where the network
outputs learn to interact with their (changing) iemment (the behavior of the decoder
based on the values of the output nodes). Asftines networks to learn only when
explicit evidence is presented that their stat detriment to classification accuracy, we

have dubbed this techniquezy training (not to be confused withazy learning
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approaches [1]). Backpropagation training ofte@suan objective function that tends to a
saturationof the weights. That is, it tends to encouraggdameights in an attempt to
output a value approaching the limits of 1 or CheTamifications of this are discussed
further in Section 5. Lazy training is biased todvaimpler solutions, meaning that

smaller weights (even approaching zero) can be tesprbvide an acceptable solution.

Two or more output nodes can in effect collabotageether to decide how learning is to
proceed at any given point. More specifically,enatction among outputs allows a
dynamic error thresholdo be implemented. That is, when one output pitssa

sufficient solution in an area of the problem spaxtber outputs do not need to work at
redundantly modeling the same local data. Consdlyyu¢hey are able to specialize and
break a complex problem up into smaller, simpleeson This provides for a more
conservative form of training that converges withaier network weights, hence with

less overfitting and greater generalization acgurac

The lazy training methodology has been successttiliged to significantly reduce error
on OCR data and on several problems from the U@bsiéory of machine learning
databases [6,15]. We implement it here for speemtognition to show further
advantages of this training style. In past expents, lazy training was performed Bbin
separate single-output networks (one for each e problem). Here we show how
it can successfully be used on a singteutput network. A single network provides a
more compact, simpler, faster solution than manyasse networks in learning a

problem with several output classes.
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Also, we illustrate that lazy training learns etfeely when there is a level of indirection

necessarily involved in arriving at a solution. ths case, while the network learns to
output phoneme confidences, these confidences tdarode the actual solution, but are
used by the phoneme decoder to derive the wordsespoHigh phoneme accuracy is
therefore not necessarily the goal of training, imstead high word recognition rates.
Word training (WT) is the name we give to trainimgth an objective of directly

increasing word recognition accuracy (possiblyhet e€xpense of phoneme accuracy).
The method for deducing the network phoneme ermon fword error is presented in the

following sub-section.

3.3 Word training algorithm

In word training the network decoder is involvedtive training process. The decoder
gathers the network outputs on all the frames aittarance. When the decoder outputs
a recognized word sequence, the output is com@ayaithst the target word sequence. If
the output utterance matches the target, no eigoalsis propagated through the network
at all (see Fig. 1, Error Signal). The networkfpens adequately within the system, and
refraining from updating the weights discourage®rbiting. When a discrepancy
between the output and target exists, then theanktweights are updated only on those

time frames where the word errors occur.

Let N be the number of network output nodes (distinctslabels). Lety be the output

value of thek™ output node of the network @o < 1, 1< k< N). LetT designate the
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target output class for a given frame apaignify the class label of thd" output node.
For target output nodesy = T, and for non-target output nodes,# T. Non-target
output nodes are calledmpetitors Letormax denote the highest-outputting target output
node. Letocmax denote the value of the highest-outputting conbeti The error,&,

back-propagated from thé' output node of the network is defined as

T, — 0, if c, =T and(oc max = Or max)
&=EAT — 0, if C, T and(ok 2 Or max) (1)
0 otherwise

where 1y and 7. are upper and lower target values such thatiO< ox < iy < 1. Thus,
the target output generates an error signal ortlyafe is some competitor with an equal
or higher value thammmay Signaling a potential misclassification. Nongetr outputs
generate an error signal only if they have an dugmual to or higher thaormax

indicating they are responsible for the misclasatfon.

The rate of convergence is partly dependent orvaélhees used fory and 7. Note that
changing either is effectually equivalent to altering the learnirage. A7 closer to the
current output value, implies a smaller error signal and will result sfower, but

steadier convergence that more closely approxinthtesrue error gradient than values

near O or 1.

Word training of a network proceeds at a differgpaice than with standard
backpropagation phoneme training. Training onky tiodes that directly contribute to

classification error of a word allows the modelr&tax more gradually into a solution,

68

www.manaraa.com



Chapter 3. Improving Speech Recognition Learnimgugh Lazy Training

learning only as much as it needs to and therefigodraging overfitting. This approach
is reminiscent of training with an error thresholipwever whereas a fixed error
threshold causes training to stop at a pre-spégfant, word training dynamically halts
at the first possible point for a given frame afivden point in time. Weights are updated
only through necessity. Without the decoder, anghte can be considered “learned”
with any output value, providing competitors outfower values. Using a decoder, even
more flexibility is possible, since the target auttpn a phoneme can be lower than its

competitors and a word still be correctly identifie

Additionally, overfitting is minimized in a worddimed network because outliers (noisy
frames) have minimal detrimental impact to the siea surface’s accuracy. This is
because the target output is only required to duapralue that is negligibly higher than
the output representing the neighboring class,llastrated in Figure 2b. This is in
contrast to classical gradient descent traininger@thard target values of 0 and 1 are
required (translating to pushing the decision safas far away as possible) even for
outliers as illustrated in Figure 2a. Hence, istitey, samples close to the outlier
belonging to the competing class (represented éygtlestion mark) have a much better

chance of being correctly classified.

[} # l
LR . o an o
[ ] I ] Dc. [ ] ] ]
L1 -1 L ] ' iy -]
& :0.:_ & & o
L] L]
. (@) - (b)

Figure 2: Overfit decision surface (a) and lazy-trained acef (b).
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3.4 Enlarging the margin

When lazy training, it is common for the highestpuiting node in the network to output
a value only slightly higher than the second-higtieimg node (see Figure 3). This is
true for correctly classified samples (above O iguFe 3), and also for incorrect ones
(below 0). This means that most training sampdesain physically close to the decision
surface throughout training. An error margin,can be introduced during the training
process that serves as a confidence buffer betttmeoutputs of target and competitor
nodes. Under the sigmoid function, the error nrairgibounded by [-1, 1]. For no error
signal to be backpropagated from the target ougougrror margin requires th@gmax <
Omax - 4. Conversely, for a competing noklgvith outputoy, the inequalityok < Ormax- 4

must be satisfied for no error signal to be backpgated fronk.

During the training procesg; can be increased gradually and might even be inegat
begin with, not expressly requiring correct clasation at first. This gives the networks
time to configure their parameters in an even mamenhibited fashion. Thenu is
increased to an interval sufficient to accountthe variance that appears in the test data,
allowing for robust generalization. The value/otan also be decreased, and remain

negative as training is concluded to account fasyoutliers (see Section 5.1).

At the extreme value g equal to 1, lazy training becomes standard SSE&ing with

target values of 1.0 and 0.0 required for all pesiand negative samples, respectively.
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@ Correct W Incorrect

# Samples
w
o
o
o

-0.1 0 0.1 0.2 0.3 0.4

O Tmax - O cmax

Figure 3: Network output margin of error after lazy training

4 Experiments

The performance of phoneme versus word trainingeisdaas been evaluated on a subset
of the TIDIGITS data corpus consisting of over DD Qitterances and sampled at 11 kHz,
containing 50,000 spoken digits, partitioned imdaghly 15,000 training samples, 1,000
validation samples and 1,000 test samples. Eauplsds partitioned into 10 ms frames.
The features generated for input to the networkstaedard mel-cepstral coefficients and

their derivatives.

4.1 Parameters
We compared fully connected feed-forward networkaingd through on-line
backpropagation maximizing cross-entropy on sinfil@mes against word-trained

networks trained on utterances. In the experimgnésented, networks contained a
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single hidden layer comprised of 50, 100, or 2@©lén nodes. Weights were initialized
to small random values. The same initial weigh&eased for each training method.
The learning rate began at 0.05 and a harmonicydeequency of 5 epochs was used.
In these tests a, of 1 andz. of O were used for faster lazy training, aadvas O.
Training was halted after 150 epochs, many epodtes &aining error ceased to

decrease.

The backpropagation network used is state-of-the-#s topology, objective function
and learning parameters were optimized throughnekte experimentation over a period

of several years.

4.2 Results

Table 1 displays the test results of standard GCé&k-peopagation training (BP) versus
word training (WT). Accuracies are shown in petcadighest column values are shown
in bold, with the highest value for the other leagntechnique italicized. Note that high
word accuracy is our prime goal. High sentenceiamy is a desired consequence, and
phoneme accuracy is ultimately irrelevant.

Table 1. Results on subset of TIDIGITS data corpus.

Method, Phoneme| Base Word |Sentence

Hidden phoneme

Nodes

BP 200 79.33 91.93| 99.88 99.60

BP 100 74.58 89.48| 99.73 99.10

BP 50 66.40 84.66/ 99.71 99.00

WT 200 51.50 76.04| 99.94 99.80

WT 100 47.96) 74.03| 99.82 99.40

WT 50 46.23 72.05| 99.79 99.30
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5 Analysis and discussion

Table 1 shows that networks generated through w@iding have the capability of

cutting word error in half from 0.12% for standgoidoneme backpropagation training to
0.06% for word training. These tests show thahaoaigh word training experienced
much lower phoneme accuracy, word accuracy wagased and the amount of overfit
was reduced (see Section 5.3). The highest acgesraere achieved with a 200-node
hidden layer. Larger networks show no further ioyement. Interestingly, as smaller
hidden layers are used, word and phoneme accuegradies more gracefully for word
training than for CE training. When the trainingpgess concentrates directly on word
accuracy instead of on learning phonemes, not ttireesponsible for word accuracy,

more network parameters are free to learn a battation.

5.1 Lazy training analysis

When networks are lazy-trained, instead of puskiiegsample outputs to one end of the
output range or the other, the vast majority resapread out just slightly above the
decision boundary. Output distribution is rougbfussian, reflecting an actual gaussian
data distribution, with a larger variance than appdrom standard backpropagation, but
only a fraction of the classification error. TIsisggests that the decision surface is much

smoother and that network weights are not saturated

Training set accuracy is largely preserved on #s set. Since the outputs learn

together, their solutions are highly correlated #melr solution transfers well to unseen
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data. Error is 50.0% less than with phoneme-tchimetworks, presenting a strong case

for lazy training on complex data sets where bamBagation networks tend to overfit.

Lazy training also assists in the case of noiswy @ad inaccurate or uncertain phoneme
labeling. In this case, the output representing mmore accurate phoneme can fire
roughly equal to the falsely labeled phoneme, ratien forcing it all the way down at 0.

Even though the correct phoneme does not fire itjleebt value among the outputs, it

fires nearly that high, enabling the decoder toeveasily produce the correct answer.

5.2 Network complexity

The network outputs the majority of values at ab@d At first, it seems counter-
intuitive that networks outputting only around Wil generalize so well. Ordinarily,
training networks together allows a classifier tecime more complex, prone to
overfitting. According to Occam’s razor, addinggraeters to a network, beyond the
smallest correct solution for a given problem, t@na detriment to the generalization
ability of the network. This is similar to the otathat a network with higher learning

capacity tends to “memorize” noise in the data,clvhs an undesirable trait.

Recently, however, it has been illustrated howrtilnieber of nodes in a network is not as
influential as themagnitudeof the weights [4]. The topology, rather, servesre as a
mechanism that lends itself to solving of certarobtems, while the weights represent
how tightly the network has fit itself to the (adtedly incomplete) training data

distribution. Network complexity is further defahén [20] as the number of parameters
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and thecapacity to which they are used in learni(ige., their magnitude). In light of
this, it is understandable why complex networks laag training, which allows networks
to have small weights, perform so well togethedthdugh the WT network has a high
number of parameters, lazy training prevents furteight updates once frames are
correctly classified and results in low complexityience, the possibility of overfitting is

reduced in the training process.

The networks used in our experiments had 130 ind®s100, or 200 hidden nodes and
199 output nodes, with 16,450, 32,900, and 65,88@ht parameters, respectively. The
rows of Table 2 list the average magnitude of thegims in networks initialized with
small random weights, during phoneme training, dadng word training, respectively.
The particular values shown are taken following #moch with the highest word
accuracy on the holdout set. The columns denateatterage weight from input to
hidden nodes, and from hidden to output nodesertsgely. The word-trained network
has weights that are twice as large as the imiatiom values, while standard training
produces weights four times larger. The lazy-gdimetwork is a simpler solution than

the network produced by standard backpropagataning.

Table 2. Average network weights.

Method | Hidden Output
Weights Weights
Initial 132 150
Standard 491 567
Lazy .280 .256
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6 Conclusion and future work

Word training reduces overfitting in gradient dedcebackpropagation training,
increasing the probability of discovering betterlusons. Its advantages in word
recognition over standard backpropagation phoneaieing have been demonstrated in
a speech recognition system. A word-trained ndtweduces word recognition error by
half over an optimized backpropagation network lo@ TIDIGITS corpus, a large real

world application.

For the word training nets presented, the learnpagameters of the optimized
backpropagation network were used. No attempt wade to optimize them for lazy
training. Since standard backpropagation and teaiyning vary significantly in their
search technique, it would be expected that diffeparameter values would perform
optimally with each objective function. Differeséttings on parameters suchmsr,
and u will be tested to further improve generalizatiot@acy. Word training will be
applied to other problems that are broken into Englieces and then merged together,

such as text recognition, using networks for OCR.
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Softprop: Softmax Neural Network Backpropagation Learning
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Abstract. Multi-layer backpropagation, like many learning @ighms that can create
complex decision surfaces, is prone to overfittil@pftprop is a novel learning approach
presented here that is reminiscent of the softmgXoes-exploit Q-learning search
heuristic. It fits the problem while delaying $etj into error minima to achieve better
generalization and more robust learning. Thicaplished by blending standard SSE
optimization with lazy training, a new objectivenfition well suited to learning
classification tasks, to form a more stable leagmmodel. Over several machine learning
data sets, softprop reduces classification errof by % and the variance in results by

38.6% over standard SSE minimization.

1 Introduction

Multi-layer feed-forward neural networks trainedahgh backpropagation have received
substantial attention as robust learning models dassification tasks [15]. Much
research has gone into improving their ability eneralize beyond the training data.

Many factors play a role in their ability to leaincluding network topology, learning
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algorithm, and the nature of the problem at ha@erfitting the training data is often
detrimental to generalization and can be causeaugjir the use of an inappropriate

objective function.

Lazy training [12,13] is a new approach to neuraiwork learning motivated by the
desire to increase generalization in classificat@sks. Lazy training implements an
objective function that seeks to directly minimdassification error while discouraging
overfitting. Lazy training is founded upon a sftiang philosophy [9] where the

traditional goal of optimizing network output prsicn is relaxed to that of merely
selecting hypotheses that produce rational (coreetisions. Lazy training has been
shown to decrease overfitting and discourage weghitration in complex learning tasks
while improving generalization [13,14]. It has feemed successfully on speech
recognition tasks, a large OCR data set and seberathmark problems selected from
the UCI Machine Learning Repository, reducing agerayeneralization error over
training of optimized standard backpropagation oeks using 10-fold stratified cross-

validation.

In this work a method for combining standard baokpgation learning and lazy training
is presented that we calbftprop It is named after the softmax exploration policyQ-
learning [19], combining greedy exploitation andnservative exploration in an
optimization search. This exploration policy tertdsbe effective in complex problem
spaces that have many local minima. This technigjgbown to achieve higher accuracy

and more robust solutions than either standarddraplagation or lazy training alone.
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A background discussion of traditional objectivadtions and the lazy training objective
function is provided in Section 2. The proposeftpsop technique is presented in
Section 3. Experiments are detailed in SectionRksults and analysis are shown in

Section 5. Conclusions and future work are presem Section 6.

2 Motivation for Lazy Training

To generalize well, a learner must use a propeeable function. Many learning
techniques incorporate an objective function miging sum-squared-erro(SSE). The
validity of using SSE as an objective function tmimize error relies on the assumption
that sample outputs are offset by inherent gauss@se, being normally distributed
about a cluster mean. For function approximatioanoarbitrary signal, this presumption
often holds. However, this assumption is invabd ¢lassification problems where the
target vectors are class codings (i.e., arbitrasinal or boolean values representing

designated classes).

Error optimization using SSE as the measure has sleewn [8] to be inconsistent with
ultimate sample classification accuracy. Thatnsnimizing SSE is not necessarily
correlated to achieving high recognition rates]8lp a monotonic objective function, the
classification figure-of-meri{CFM), is introduced for which minimizing errormains

consistent with increasing classification accuradyetworks that use the CFM as their
criterion function in phoneme recognition are idwoed in [8] and further considered in

[5]. They are, however, also susceptible to otterf.
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The question of how to prevent overfitting is atkilone. When a network has many
free parameters local minima can often be avoidéa. the other hand, networks with
few free parameters tend to exhibit better gereatitin performance. Determining the

appropriate size network remains an open problgm [7

The above objective functions provide mechanisnet tho not directly reflect the

ultimate goal of classification learning, i.e.,aohieve high recognition rates on unseen
data. Numerous experiments in the literature pi®waxamples of networks that achieve
little error on the training set but fail to achéeliigh accuracy on test data [2, 16]. Thisis
due to a variety of reasons, such @serfitting the data or having an incomplete
representation of the data distribution in thenireg set. There is an inherent tradeoff
between fitting the (limited) data sample perfechd generalizing accurately over the

entire population.

Methods of addressing overfit include using a hotdset for model selection [18], cross-
validation [2], node pruning [6, 7], and weight dgd20]. These techniques seek to
compensate for the bias of standard backpropaghkgaoning [11] in specific situations.
For example, as overly large networks tend to ayarbde pruning seeks to improve
accuracy by simplifying network topology. Formingtwork ensembles can also reduce
problems in the inductive bias inherent to graddedcent. Ensemble techniques, such
asbaggingandboosting[10], orwagging[3], are more robust than single networks when

the errors among the networks are not closely [@ee.
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There is evidence that the magnitude of the weigh&snetwork plays a more important
role to generalization than the number of nodes {3ptimizing SSE tends to a saturation
of weights, often equated with overfitting. It lfmls that overfit might be reduced by
keeping the weights smaller. Weight decay is amomtechnique to discourage weight
saturation. Another simple method of reducing bivés to provide a maximum error
tolerance threshold,dnax Which is the smallest absolute output error to be
backpropagated. In other words, for a gidgn, target valuety, and network outputy,

no weight update occurs if the absolute ertpr[ok | <dmax This threshold is arbitrarily
chosen to indicate the point at which a samplebleas sufficiently approximated. Using

an error threshold, a network is permitted to cogeevith much smaller weights [17].

2.1 Lazy Training

Retaining smaller weights can be accomplished nmaterally through lazy training.

Lazy training only backpropagates an error sigmalnusclassified patterns. Previous
work [12, 13] has shown how applying lazy trainitgy classification problems can

consistently improve generalization.

For each pattern considered by the network duhegraining process, only output nodes
credited with classification errors backpropagatewmor signal. As this forces a network
to delay learning until explicit evidence is presehthat its state is a detriment to
classification accuracy, we have dubbed this tephaiazy training(not to be confused

with lazy learning approaches [1]). Often, an objective function used in
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backpropagation training that tends to a saturatibthe weights. That is, it tends to
encourage larger weights in an attempt to outplutiegaapproaching the limits of 0 and 1.
Lazy training does not depend on idealized targgtuds of 0 and 1. As such, it is biased
toward simpler solutions, meaning that smaller Wweignagnitudes (even approaching
zero) can provide a solution with high classifioataccuracy. This approach allows the

model to approach a solution more conservativetiydiscourages overfit.

2.2 Lazy Training Heuristic

The lazy training error function is as follows. tl be the number of network output
nodes (distinct class labels). Lat be the output value of thid" output node of the
network (O< o<1, 1< k< N) for a given pattern. L&k designate the target output class
for that pattern and signify the class label of tHé" output node. For target output
nodesgc =T, and for non-target output nodegs# T. Non-target output nodes are called
competitors Let omax denote the highest-outputting target output nodeet O-tmax
denote the value of the highest-outputting competitThe error,&, back-propagated

from thek™ output node of the network is defined as

0~T max - Ok If Ck = T and(0~T max 2 0T max)
&=140;,.—0 Ifc,#ZTand(o, 20;,,) - @)
0 otherwise

Thus, the target output backpropagates an erroakimnly if there is some competitor
with an equal or higher value than it, signalinghsclassification. Non-target outputs

generate an error signal only if they have a valygal to or higher thadmay indicating
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they are also responsible for the misclassificatibhe error value is set to the difference

in value between the target and competitor nodes.

Lazy training of a network proceeds at a differguatice than with standard SSE
minimization. Weights are updated only througheasstty. Hence, a pattern can be
considered “learned” with any combination of outpa#tiues, providing competitors
output lower values than targets. Training onlyde® that directly contribute to
classification error allows the model to relax mgradually into a solution and avoid

premature weight saturation.

The output nodes can in effect collaborate togetithdéorm correct decisions. When the
target output node presents a sufficient solut@inesin a local area of the problem space
(i.e. its value is higher than for non-target ngdesmpetitor outputs do not need to work
at redundantly modeling the same local data (approximate a zero output value).
Consequently, they are able to specialize and beeaiplex problems up into smaller,
simpler ones. Whereas a fixed error thresholdestraining to stop when output values
reach a pre-specified point (e.g. 0.1 and 0.9) teaining implements @ynamic error
threshold halting training on a given pattern as soon &sdatassified correctly. Keeping

weights smaller allows for training with less oveaind greater generalization accuracy.

2.3 Adding an error margin to lazy answers
When lazy training, it is common for the highestpuiting node in the network to output

a value only slightly higher than the second-higtieimg node (see Figure 1). This is
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true for correctly classified samples (to the righO in Figure 1), and also for incorrect
ones (to the left of 0). This means that moshingl samples remain physically close to
the decision surface throughout training. An emmargin, 4, is introduced during the
training process to serve as a confidence bufféwden the outputs of target and
competitor nodes. Using the sigmoid function, ¢éner margin is bounded by [-1, 1].
For no error signal to be backpropagated from dinget output, an error margin requires
thato-tmax + /< Otmax. Conversely, for a competing nokigvith outputoy, the inequality

Ok + U < Ormax Must be satisfied for no error signal to be bacgpgated fronk.

I Correct W Incorrect

6000

5000

# Samples
w N
o o
o o
o o

N
o
o
o

1000

-0.1 0 0.1 0.2 0.3 0.4
O Tmax = 0 -7 max

Figure 1. Network output margin of error after lazy traigin

Requiring an error margin is important since thalgdf learning in this instance is not
simply to learn the training environment well buat be able to generalize. This is
especially important in the case of noisy probleatad During the training procegscan

be increased gradually and might even be negatiegin with, not expressly requiring
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correct classification at first. This gives theéwark time to configure its parameters in a
more uninhibited fashion. Themis increased to an interval sufficient to accdiantthe

variance that appears in the test data, allowingdioust generalization.

At the extreme value g equal to 1, lazy training becomes standard SSE&ing with
output values of 1.0 and 0.0 required to satisgyrttargin. Since a margin of 1 can never
be obtained without infinite weights, an error sigis always backpropagated on every

pattern.

3 Softprop Heuristic

The softprop heuristic performs a novel explorelexsearch of the solution space for
multi-layer neural networks. Softprop exchanges tise of a single pure objective
function with a mixture taking advantage of bothyldraining and SSE minimization at

appropriate times during the learning process. Héhistic is as follows:

For each epoch, let the lazy training error maygmt/T, wheret [ {0, 1, 2,

...} is the current epoch andis the maximum number of epochs to train.

Softprop causes a smooth shift from lazy trainiogSSE minimization as the search
progresses. The lazy exploration phase first stéer decision surface toward a general
problem solution without saturating network weigipiematurely. Then, as learning

tends toward SSE exploitation, the distance ofdbaeision boundary from proximate
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patterns is maximized. The practical aspect f #pproach is analogous to simulated
annealing, where a Boltzmann stochastic updatesed with an update probability
“temperature” that is gradually reduced to allow tietwork to gradually settle into an

error minimum.

The complexity of softprop is equivalent to thatstdndard SSE optimization and lazy

training and converges in comparatively as manygepo

4 Experiments

Empirical results are presented in this section.

4.1 Data sets

Several well-known benchmark classification proldenere selected from the UC Irvine
Machine Learning Repository (UCI MLR). The probkemvere selected so as to have a
wide variety of characteristics (size, number dtfiees, complexity, etc.) in order to
demonstrate the robustness of the learning algosith Results on each problem were

averaged using 10-fold stratified cross-validation.

4.2. Training parameters
Experiments were performed comparing the SSE aryl tlaining objective functions
against the proposed softprop heuristic. Feeddoiwnulti-layer perceptron networks

with a single, fully-connected hidden layer wemgred through on-line backpropagation.
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In all experiments, weights were initialized to fonn random values within the range
[-0.3,0.3]. The learning rate was 0.1 and momentuas 0.5. Networks trained to

optimize SSE used an error threshalg, of 0.1.

Feature values (both nominal and continuous) werenalized between zero and one.
Training patterns were presented to the netwoknandom order each epoch. The same
initial random seed for network weight initializai and sample shuffling was used for

all experiments on a given data set.

SSE and lazy training continued until the trainged was successfully learned or until
training classification error ceased to decreaseafsubstantial number of epochs. The
softprop schedule was set for an equivalent nurabepochs. A holdout set (between
10-20% of the data) was randomly selected fromttaiing set each fold to perform

model validation. The model selected for test eatibn was the network epoch with the

best holdout accuracy.

Network architecture was optimized to maximize geheation for each problem and
learning heuristic. Pattern classification wased®eined bywinner-take-all(the class of

the highest outputting node is chosen) on all notdted.
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5 Results

Table 1 lists the results of a naive Bayes classifiaken from [21]), standard SSE
backpropagation, lazy training, and softprop on skkected UCI MLR corpus. Each
field lists first the average holdout set accurasing 10-fold stratified cross validation.
The second value is the variance of the classificaiccuracy over all ten runs. The best

generalization and variance for each problem iddubl

On average, an optimized backpropagation networkimizing SSE is superior to a
naive Bayes learner on the above classificatiorblpnas. Lazy training obtains a
significantly higher accuracy over SSE trainingntetestingly, the SSE minimizing
network achieves an SSE up to two orders of magaitawer than that of the selected
lazy trained network, a moot point because SSEniplg a means to an end, not the
ultimate measure of optimality. However, this &srvo illustrate that the SSE and lazy

approaches each perform radically different searofi¢he problem space.

Softprop performed better than both lazy trainimgl aimple SSE backpropagation,
reducing classification error by 17.1% and had liket overall accuracy. Softprop is
particularly effective in learning noisy problenesd.sonai where premature saturation

of weights could trap the network in a local minimu

Decreasing classification error is a worthy achmeget, but of possibly even greater

import is the fact that softprop has a significanerall reduction in the variance of
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classification error over the ten cross-validatiofds.

Lazy training shows a minor

overall reduction in standard deviation of erroeio\6SE backpropagation. Softprop

provides a larger reduction of 38.6%. This supptre softprop approach as being more

robust.

Table 1. Results on UCI MLR data sets using 10-fold dieaticross-validation.

Data set Bayes| SSE Lazy | Softprop
ann 99.7 |98.25 | 97.92 | 98.29
0.1 0.54 |055 |0.43
bcw 93.6 |96.78 | 96.87 | 97.07
3.8 205 |3.76 |1.61
ionosphere| 85.5 | 88.03 | 90.60 | 89.17
4.9 6.12 |4.80 |4.93
iris 947 |93.33 | 95.33 | 95.33
6.9 7.30 |4.27 | 3.06
musk2 97.1 |99.38 | 99.44 | 99.23
0.7 0.21 |0.40 ]0.48
pima 722 | 77.47 | 76.69 | 76.69
6.9 3.75 |5.22 |237
sonar 73.1 | 77.40 | 81.73 | 83.65
11.3 10.77 | 14.08 | 8.67
wine 94.4 |94.94 | 96.63 | 98.88
5.9 8.04 |458 |229
Average | 88.79 | 90.70 | 91.93 | 92.29
506 (485 |4.74 |2.98

6 Conclusions and Future Work

The softprop heuristic of gradually increasing tleguired margin of error between

classifier outputs, reflecting a steady shift betweslassification error exploration and

SSE exploitation, was shown to be superior to eipéimization of SSE or classification

92

www.manaraa.com



Chapter 4. Softprop: Softmax Neural Network Back@agation Learning

error alone. Softprop reduces classification eongr a corpus of machine learning data

sets by 17.1% and variance in test accuracy by?38.6

While the parameters of the SSE backpropagatiomnéeahad been extensively
optimized, due to time constraints little parameieming was done on the softprop
heuristics. It is possible that by optimizing tearning parameters even more significant
improvements could be shown. Providing specialeguloration policies for local areas
of the parameter space by dynamically setting aiqodar 1/ for each pattern will be
considered. In this way, local learning can prdcaedifferent speeds depending on the
local characteristics of the problem domain. Aarméng progresses, the values for the
local i can be learned and refined according to need. willeexperiment with the
feasibility of relaxing the restrictions of our sefa by allowing a negative-valugd This

in essence provides a way to “tunnel” through difffi, inconsistent, or noisy portions of
the problem space in order to escape local mininthraight assist in achieving more

optimal solutions.
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Chapter 5

CB3: An Adaptive Error Function for Backpropagation Training
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Abstract. Effective backpropagation training of multi-layer perceptratepends on the
incorporation of an appropriate error or objective function. Gleagon-based (CB) error
functions are heuristic approaches that attempt to guide thnketlirectly to correct pattern
classification rather than using common error minimization kécsi such as sum-squared error
and cross-entropy, which do not explicitly minimize classificatoror. This work presents
CB3, a novel CB approach that learns the error function to be ulsiel aining. This is
accomplished by learning pattern confidence margins during rigainvhich are used to
dynamically set output target values for each training patteOn eleven applications, CB3
significantly outperforms previous CB error functions, and also exiagerage test error over
conventional error metrics using 0-1 targets without weigbtayldy 1.8%, and by 1.3% over

metrics with weight decay. CB3 also exhibits lower model wagaand tighter mean confidence

interval.

Key words. neural network, backpropagation, classification, error functions, adaptyets

Abbreviations. CB — classification-based; CE — cross-entropy; SSE — sum-squared error
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1 Introduction

Multi-layer feed-forward neural networks trainedadigh error backpropagation [11]
have received substantial attention as robust ilEgarmodels for classification tasks.
Classification-based (CB) error functions [9, 163 a relatively new method of training
multi-layer perceptrons. CB functions heuristigalseek to directly minimize

classification error by backpropagating networloewnly on misclassified patterns. In
doing so, they perform relatively minimal updatesnetwork parameters in order to
discourage premature weight saturation and owueditt This is conducive to higher
accuracy in classification problems than optimiaith respect to commonly used error
functions, such as sum-squared error (SSE) ang-emtsopy (CE). This work presents a
novel CB error function, CB3, which improves on stxig CB functions. It is an

adapting error function that dynamically sets outfarget values during training by
learning confidence margins on each pattern intthaing set. These confidence
margins guide the network in learning each pati@enording to the ability of the

network, selectively learning patterns that apgeagprovide better generalization while
avoiding those that would encourage weight satmatnd possible overfit without

improving generalization.

Performance of networks trained with the CB3 erwmction is compared against
previous CB error functions, SSE and CE with anthet weight decay [7], on a corpus
of eleven benchmark machine learning datasets. €B8s a significant reduction in

average test error of 1.8% over standard backpegmegusing conventional 0-1 target
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values without weight decay, and a significant dase of 1.3% average test error over
backpropagation augmented by weight decay regal@miz CB3 also exhibits lower

model variance with smaller standard deviation.

Section 2 reviews related work and motivation fus thew approach. Sections 3 and 4
present the CB3 algorithm and a working exampleacti8n 5 describes experiments

performed and Section 6 gives empirical resultsdiacussion.

2 Motivation for CB3

A prime goal of classification learning is to acleehigh recognition rates on unseen
data. To generalize well, a learner must use pgurobjective function. The validity of
using common differentiable metrics like sum-sqdaeeor (SSE) relies on the
assumption that sample outputs are offset by imteBaussian noise, being normally
distributed about a cluster mean. For functionreximmation of an arbitrary signal, this
presumption often holds. However, this assumpitsgomvalid for classification tasks,
where assigned real-valued target vectors arerampivalues used to represent class
labels. This suggests that other error metricg. (eross-entropy) are more suited to
classification problems. Likewise, cross-entro@¥J is preferable to SSE when output
class distributions are not balanced. When thimtghe case, CE and SSE may perform

equivalently.
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Traditionally, classification problems are learn#dough error backpropagation by
providing a vector of strict (*hard”) 0/1 targetluas to represent the class label of a
particular pattern. Minimizing an error functionithv hard target values tends to a
saturation of weights, often equated with overfdti There is evidence that the
magnitude of the weights in a network plays a mangortant role in generalization than
the number of hidden nodes [1]. It follows thatdit might be reduced by keeping the
weights smaller. Regularization methods such agtwealecay [7,14] are commonly
used to discourage weight saturation and oveffiliese methods generally assume that
overfitting is a global phenomenon. However, ovarén vary significantly in different
regions of the model. Proper early stopping methttht take advantage of this

information can further improve generalization [6].

An alternate method of discouraging weight satarais to provide a maximum error
tolerance threshold)na, and not backpropagate any error when networkubuwtplues
are within this range of the target values. TBafor a givendnay target valuety, and
network outputoy, no weight update occurs if the absolute ertRr ok | <dmax This
threshold is arbitrarily chosen to indicate the npoat which a sample has been
sufficiently approximated. Using an error thresha network is permitted to converge

with smaller weights [12].

Rankprop [5] provides an alternative method tonirgy with hard target values and
empirically shows that it improves generalizatioRankprop records the output of the

learner for each training pattern. It then sos samples in the training set based on

100

www.manaraa.com



Chapter 5. CB3: An Adaptive Error Function for Bpadpagation Training

class, then according to output values. Thushl of the samples consistent with the
current model is developed and used to definedtlget values on the next epoch. The
idea behind Rankprop is that in the case of compl@aXinear solutions a simpldess
nonlinear function is provided to learn instead. The raesgltsimpler model often

generalizes better.

Prior work has shown [8, 9, 10] that methods ofchating softer values for each training
pattern based on the network’s output vector imgsogeneralization and reduces
variance on classification problems over a corduseachmark learning problems. One
of these, called lazy training or CB1, focuses t@ssification accuracy backpropagates
an error signal through the network only when agpatis misclassified. CB2, starts with
the “lazy” targets used in CB1 and gradually segggrahem until they reach the 0-1
targets used in standard training. Other appreaainelve using an “oracle” teacher
network to provide target output values to simpletworks that can learn to emulate its

behavior.

This work extends CB1 and CB2 by providing a heigri® learn how much error can be
tolerated in each training pattern based on how thel network is learning in order to

improve generalization.

3 CB3 Algorithm

Learning how much error to backpropagate basedhenperformance of the network

being trained is, in effect, a meta-learning algpon. In other words, the error function
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itself is learned based on the ability of the neknto learn it. CB3 accomplishes this by
learning how confident the network is in classifyirach training pattern as learning
progresses. This method for dynamically learniagggsn confidence margins is shown
in Figure 1. CB3 modifies the standard back-prepiag algorithm in the following

three ways:

* For each pattern-output node pair, a confidenceevis stored and modified over
time. This value represents an interval in theyeaof the squashing function that
reflects the numeric amount by which the node mistiag in classifying the
pattern correctly or incorrectly.

* As training progresses, each pattern’s learnedidemée values are used in
calculating the target output values for the patter

* The objective function is modified based on themgdt values to decide how

large of an error signal to backpropagate throhgmetwork for each pattern.

Without loss of generality, in this work it is assed that a single, distinct output node in

the network represents each class label. NL.dde the number of output nodes (and
distinct class labels). On a given patternojdie the output value of th8 output node

of the network (0 0 < 1, 1<j < N). LetT designate the target output class for that
pattern andc; signify the class label of thjéh output node. For the output node

corresponding to the pattern’s class lalbek T. We refer to this output node esfor

short. For non-target output nodes,# T. Non-target output nodes are called
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competitors Let or denote the value of the target output node. d.gf.x denote the

value of the highest-outputting competitor.

Initialization.
Set expected confidence valu€s, for each pattern-output nogepair.

Training.
Present a training patteiinto the network.
Determineor ando-fmay.

1. For each output nogeset its target output;:

min@,0_; . +aC;;) if ¢, =TandC;; >0

T = max@,0, —aC;;) ifc; #TandC; >0 )
: Ot max if ¢, =TandC;; <0
o, if ¢; #TandC; <0

2. From each output nodebackpropagate erra;,
T,-o, ifc, =Tando, <T,
g=4T, -0, ifc, #Tando; >T, 2
0 otherwise
3. For allj, update confidence val@&; to make it closer to the observed interval.
G =Gy +nc (O -Cy) 3)
where the observed intervé);, is defined as

{oj ~O e IfC =T

Ol = _
: o,-o, ifc, T

(4)

Continue training until stopping criterion is satisfied.

Figure 1. CB3 algorithm.

In the initialization phase, for each combinatidntraining pattern and network output
node, a confidence valu€, is stored. WitH training patterns and output nodes in the

network, this results inJ values being stored. These values indicate theuamof

103

www.manaraa.com



Chapter 5. CB3: An Adaptive Error Function for Bpadpagation Training

confidence the network’s output nodes expect teehavclassifying the corresponding
pattern correctly. Positive values indicate thapadtern is expected to be correctly
classified by the output node while negative valuesan it is expected to be
misclassified by the node. These values are ugdagetraining progresses. We have
found initial confidence values above approxima®B to generalize better than values

below 0.2 on all applications we tested (see Fi@yre

During training, patterns are shuffled each epocot stochastically presented to the
network. The vector of target values for a patsedass outputs is determined as shown
in Figure 1, equation 1. Each target value isudated differently depending on whether
¢, = T and whether the confidence value for that n@ig,is positive or negative. With a
positive confidence, the target value &gris set t00-tmax + @Cij. That is, it is set to the
maximum competitor’s output value plus the confdeivalue on node for patterni,
multiplied by «, a multiplicative factor greater than or equal doe. This factor
intuitively refers to how aggressively CB3 will ttp separate the target values for
opposing classes. A value of one will allow tasg&t remain closer together while a
greater value will separate them more. Converselypetitor class targets are set{o

- aC;j, i.e., cr's output value minus the confidence value, mukplby a. We have
found values for above 1.5 to produce better generalization thameide values on all

tested applications (see Figure 3).
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Figure 2. Influence of CB3's initial confidence values o tiest accuracy of selected

applications. The highlighted area is the 95% iclamice interval for an observation.

The min(1;) and max(0) operators are used to keep the target valuesnvitie range of

possible output valueg.@.[0,1] for the sigmoid activation function).

When a negative confidence value existsyax andor are used as the target values. The
reason for this is that a negative confidence migE that this output node has learned to
consistently misclassify this pattern over timehisTcould happen if the network either
does not have enough hidden nodes to learn thdepnobufficiently, or a noisy or

incorrectly labeled pattern is encountered. Imegitcase, further effort to learn these
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“problem” patterns could lead to premature weightugation or overfit. On the other
hand, it is possible that the network’s hidden sold@ve simply not yet learned to model
this area of the problem space correctly, in witabe some effort should still be made to
learn to classify this pattern correctly. If tidsnot the case, however, undue resources
(in the form of network parameters) have not beprasdered in trying to learn a pattern

that will probably not improve generalization araild even be detrimental to it.
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Figure 3. Influence of CB3’sx parameter on the test accuracy of selected apiplisa

The highlighted area is the 95% confidence intefahn observation.
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Once the target vector has been calculated, tloe gignal for backpropagation through
the network is determined (see Figure 1, equatipn Dbserve that no error is
backpropagated by CB3 when an output value is @&réatter than the dynamically set
target value (i.e., a value higher than the tavgéie for the target class node, or a value
lower then the target for nodes of other class@$at is, backpropagating error depends
on whether the pattern is currently being classi@ierrectly or not, as in CB1 [10]. This
is akin to setting @nax error threshold (see section 2) for each pattaset on the value
of the highest outputting competitor. This selesterror signal avoids updating network
weights when doing so would not necessarily leadnoroved accuracy (the pattern is
already being classified correctly) while riskingemature weight saturation and overfit.
On misclassified patterns, error is backpropagatdy from output nodes that fall short
of their dynamic target values and are considereddme way responsible for the

misclassification.

Following the determination and backpropagatioerobr terms comes the meta-learning
step, where the learned confidences used in célogldne dynamic target values are also
iteratively updated (see Figure 1, equation 3).e €hrrent pattern’s observed interval
vector,Ol;, is calculated as shown in Figure 1, equatiomdicating the amount of split

between the output values of positive and negafiass labels on this pattern, respective

to each output node.
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Figure 4. Influence ofyc on the test accuracy of selected applications.

The highlighted area is the 95% confidence intefeabn observation.

As an error delta is calculated for iterative weighdating to bring output values closer
to the target values, likewise the learned confidemalueC;; is subtracted from the
actual observed interv@l; and multiplied by learning ratg: to calculate a confidence
value delta. This confidence delta is added tol#faened confidence. We observed
values ofyc less than 0.025 to have the highest generalizatmohlowest variance on all

tested applications (see Figure 4).

As training continuesC;; will be iteratively learned. It reflects the atyilof the network

output nodes to locally distinguish the target €lasm the others. Learning this value
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has the practical purpose of hinting to the netwehkch patterns can be classified with
confidence (such as cluster centers), which pateeed to be learned more (fringe
patterns), and which patterns appear difficulte@arh correctly with the current network
at all (noise or overlapping classes). This ergmlthee training process to guide the
network to spend more resources on learning trgirpatterns that most probably
contribute to higher generalization accuracy whé&ectively ignoring those that lead the

network to overfit and weight saturation as it s to learn them.

CB3 requires an @ scan through the network outputs to determine the highest target
and competitor values, to set the target valueefmh node before backpropagation, and
then to update the observed confidence intervddvi@hg backpropagation. However,
this additional overhead to the standard backpraj@y is negligible compared to the
computation requirements of @) for feed-forwarding a pattern vector andit@j for
backpropagation, wheras the number of inputs ards the number of hidden nodes. In
fact, CB3 saves time by omitting the error backpggiion step for correctly classified
patterns with sufficient output confidences. Thenber of epochs required to converge
is similar for CB3 and CE training, and CB3 geligraonverges in about half as many

epochs as SSE training.

The following section presents a hypothetical exanop using the CB3 algorithm.
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4 CB3: An Example

Given a three-class problem with class labels AarR] C, a patternis labeled as type B.

Leta = 1.5 and;c = 0.01.

Let the current confidence values for this patterf0.1, 0.3, 0.1], indicating the network
output nodes all believe they are performing cdlydaut with only a moderate margin
separating them. If the network were to output,[0.4, 0.3] on this pattero; is 0.7 and

O-mmax IS 0.4. The target vectdrwould be calculated to be

T=[or—mGj, O-tmax + aCi; , or —aC;]
- [0.7-1.5(0.1), 0.4 + 1.5(0.3) , 0.7 — L.ED

= [0.55, 0.85, 0.55].

All values are within the imposed ranges, so the/max operators are omitted here for
clarity. Next, the error vectaris calculated. The first and third outputs aresgzctorily
outside the learned confidence margins but thergenode has a target value exceeding
its output. Thuseis [0,0.15,0]. Error is backpropagated from tkeand output node

only. Its observed confidence may increase ovieseguent iterations.

The pattern’s confidence values are now each ugdataehe delta;c (Ol; — Cij), where

the observed interval vect®t is
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Ol =[or—0j, 0y — O-Tmax, Or — 0]
=[0.7-0.4,0.7-0.4,0.7 - 0.3]

=[0.3, 0.3, 0.4]

and the update delta is

= [0.01(0.3 — 0.1), 0.01(0.3 — 0.2), 0.01(0.4 JP.1

=1[0.002, 0.001, 0.003].

The learned confidences are increased to [0.1@R100.103]. As training progresses, if
the network continues to output similar values, toafidences on this pattern will
continue to grow. As these confidences get laggeater error is backpropagated and the

observed interval over network outputs will tendeflect these confidences.

5 Experiments

Several well-known benchmark classification proldemwere selected from the UC
Irvine Machine Learning Repository (UCI MLR) [2]The problems were selected so
as to have a wide variety of characteristics (nundieatterns, number and type of
features, and complexity) in order to analyze tlbustness of the learning

algorithm.
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Experiments were performed using a privately dgyadoC++ library comparing feed-
forward multi-layer perceptron networks optimizi8$E and cross-entropy (CE), both
with standard 0-1 targets with and without weigktaly regularization, to the CB1-3
algorithms. It was observed that SSE and CE optngi networks yielded nearly
identical results using both static 0-1 targets @it the CB1-3 algorithms. Therefore,

only the results of training with CE are preserftadorevity.

The multi-layer perceptrons had a single, fully mected hidden layer and were trained
through on-line backpropagation. The optimal nundfehidden nodes was empirically
determined for each task based on holdout set acgusearching layer sizes within the
range from one to fifty hidden nodes. In all exments, network weights were
initialized to uniform random values within the gen[-0.1,0.1] [13]. The learning rate
was 0.1 and momentum was 0.7. Weight decay vddatgeen. = 0.00001 to 0.0001
were used, optimized for each application [7]. €&3,a = 1.5,5c = 0.01, and the initial

pattern confidence values were 0.25.

Feature values (both nominal and continuous) werenalized between zero and one.
Training patterns were presented to the netwogknandom order each epoch. The same
initial random seed for network weight initializai and sample shuffling was used for

all experiments on a given dataset.

Pattern classification was determined twnner-take-all (the class of the highest

outputting node is chosen). Training continuedluhe training set was successfully
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learned or training set classification error ceawedecrease for a substantial number of
epochs. The resultant number of epochs trainedcaagparable among all approaches
within a factor of three. The model selected fsttevaluation was the network on the
epoch with the best holdout set accuracy, wheréntih@out set consisted of 20% of the

original training data.

6 Results and Discussion

Table 1 lists the results of testing a multi-lay@erceptron backpropagating error
maximizing cross-entropy without weight decay (BR)th weight decay (BPw), and
CB1-3 on the selected applications. Each fielts [fgst the average test set accuracy
using 30-fold stratified cross validation. Neunatwork experiments were averaged over
30 runs with random initial weights. The first walin each cell is the average accuracy
over these runs. The second value is the 95% &fadeconfidence interval for these

means. The best generalization for each problamderlined.

Table 1.Results on UCI MLR datasets using stratified crneagdation.

Data | ann | bal- | bcw | derm| ecoli|ionos| iris |musk? pima|sonarn wine | avg
set ance

BP |98.1/95.0]97.1{97.2/856|91.6{94.9| 99.4|72.1|80.6| 98.5|91.8
0.18/1.80]1.25/1.66|3.89| 2.90| 3.72| 0.13 | 3.19| 3.21| 1.80| 0.37

BPw | 952/ 96.6| 96.7| 97.2| 86.1| 92.8| 96.7| 97.0 | 75.6| 83.2| 98.1| 92.3
0.21)1.59]|0.74| 1.72| 3.82|1.65| 1.54| 0.25|1.63| 2.88| 1.09]| 0.36

CB1 | 974|974/ 97.2|96.1|84.2|90.6|96.7| 99.2 | 76.3| 84.1| 97.8| 925
0.30/ 0.89] 1.10| 2.00| 4.30| 2.82| 2.97| 0.15| 2.63| 3.00| 2.99| 0.37

CB2 | 98.2197.1|96.9|97.8| 86.0| 92.0| 96.0| 99.3 | 75.5| 83.7| 98.3| 92.8
0.19|11.25/1.14|1.34|4.30| 2.31| 3.48| 0.10 | 2.88| 2.27| 2.88| 0.37

CB3 |98.3/97.2|197.5/97.8|86.6|92.9|97.3| 98.9 | 78.1| 86.1| 98.6| 93.6
0.15/1.00/0.81|1.39|3.70| 2.43| 2.51| 0.21 | 2.78|2.32|1.71] 0.35
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CB3 has higher test accuracy and tighter mean dendie interval then CE without
weight decay (BP) on ten of the eleven datasetedesBP outperformed CB3 on the
musk2dataset. CB3 reduces average test error by 1886 BP, significant with a
pairwise Student’s confidence of p < 0.05. CB3 has a tighter comfageinterval, which
indicates it has a smaller standard deviation anchore robust to perturbations in the

initial network parameter values and pattern priegem order.

CB3 has higher accuracy than BPw on all elevensdédaand exhibits an average
decrease in test error of 1.3%, significant witbagrwiset confidence of p < 0.05. CB3
has a tighter confidence interval than BPw on dixhe eleven datasets and is slightly
higher than BPw on average. CB3 outperforms CRIL@GBA2 on nine of eleven datasets,
with an average decrease in test error of 1.1%0a8%b, respectively, significant with a
pairwiset confidence of p < 0.05. CB3 has a tighter comfageinterval than CB1 and

CB2.

For a given functiorf(x), there may exist a functiog(x) that also solves the given
problem but is easier for backpropagation to |84, 5]. Recall that CB3 does not
modify the actual backpropagation algorithm usedifadating the network parameters in
any way. CB3's power comes through the modificatod target values as a tool for
smoother training. Most often, conventional targatues of 0 and 1 are used in

classification tasks to learn proper class lab&&3, using target values greater than 0
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and less than 1, consequently calculates much engalor terms during the initial phase

of training. Less error may result in a functibattis easier for backpropagation to learn.

7 Conclusions and Future Work

CB3 is shown to be superior to multi-layer backpmggtion networks trained with
previous CB error functions and CE with hard tesgetthout weight decay (BP) and
with weight decay (BPw) over a corpus of elevenliappons. CB3 significantly reduces
average test error by 1.8% over BP, by 1.3% ovev,Bind by 1.1% and 0.8% over CB1
and CB2, respectively. It is surmised that CB&rieng to approximate iteratively
learned target values, provides a function thaasier for backpropagation to learn than

the strict conventional 0-1 classification function

Since the learned confidence values are able tdidmhp represent noisy patterns, they
could be used to explicitly mark overlapping clasgions. This knowledge is useful to
reduce local uncertainty for problems with regiohshe feature space that are inherently
multi-class. A method for such an approach andyaisaof its efficacy is forthcoming.
An ROC analysis of CB3 is planned on applicatiomere the cost of false positives is

different than false negatives.

Furthermore, preliminary tests have shown thatepatinisclassifications are not highly

correlated between CB3 and BP. We will experim@ith combining BP- and CB-
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trained networks in hybrid ensembles and voting rmodtees to further improve

generalization.
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Analysis of Classification-based Error Functions
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Abstract. Effective backpropagation training of multi-laygerceptrons depends on the
incorporation of an appropriate error or cost fiorct Classification-based (CB) error
functions are heuristic approaches that attemmguide the network directly to correct
pattern classification rather than using commorreminimization heuristics, such as
sum-squared error (SSE) and cross-entropy (CE)chwhkio not explicitly minimize

classification error. This work presents a compagastudy of SSE, CE, CB1, CB2, and
CB3 error functions on a corpus of machine learm@ipglications. It is demonstrated that
CB3 achieves significantly higher generalizationl &wer variance than the other error
functions on these datasets. Further analysis SHOBB to be more robust to initial
network parameter settings, pattern presentatia@erprearning rate, the number of
hidden nodes, and the ability to avoid weight sstan during training. This suggests
CB3 is capable of performing well while requiringnanimum of learning parameter

tuning.

Keywords: neural networks; backpropagation; classificatemor functions; adaptive

targets
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1 Introduction

Artificial neural networks (ANNs) have received stdntial attention as robust learning
models for classification learning tasks and hagenbshown to perform comparably to
other learning algorithms (Caruana & Niculescu-Mi2D06). Classification-based (CB)
error functions (Rimer & Martinez, 2004, Rimer & Miaez, 2006a; Rimer & Martinez,
2006b) are a relatively new method of training rrlalger perceptrons. CB approaches
heuristically seek to minimize classification ernmore directly by backpropagating
distinct error signals from correctly classifieddamisclassified patterns, and from target
and non-target output nodes. They tend to perfetatively minimal updates to network
parameters in order to discourage premature wesgtiration and overfitting. This is
conducive to higher accuracy in classification peois than optimizing with respect to

commonly used error functions, such as sum-squared (SSE) and cross-entropy (CE).

We have observed a growing propensity in the ma&ckdarning community to reject the
merit of new machine learning algorithms basedlga®a published empirical results in
comparative testing. Several reasons for thiglaseribed in (Salzberg, 1999), including
lack of real problem validation, testing on onlgiagle or few data sets, parameter tuning
with the help of test data, and experimental dai@g accompanied with insufficient
statistical support. Given that existing classifion-based error functions are heuristic in
nature, intuitive and perform well in practice lwith only modest theoretical foundation,
the purpose of this work is to present a sufficemipirical and statistical comparison of

CB and conventional error functions to assert ganeility in classification domains.
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Statistical significance results are shown acres®ml isolated parameter controls that
are known to influence convergence in backpropagatiaining: sensitivity to initial
network parameter settings, variance in trainingtgpas, pattern presentation order,
learning rate, and number of hidden nodes acrogaebenchmark applications. The
purpose of these tests is to demonstrate algontibustness independent of parameter
tuning on specific algorithms or datasets. Acrbsests, the CB3 algorithm is shown to
be predominantly superior, suggesting CB3 is capabperforming well while requiring

a minimum of parameter tuning. Further behavianalysis support these results and

suggest promising avenues in further researchclassification-based learning.

A background discussion of issues involved in sglgcan objective function for neural
network error backpropagation is provided in sectty The CB1-3 algorithms are
outlined in section 3. Experiments and results gmesented in section 4. Further

discussion and analysis is provided in section 5.

2 Conventional Objective Functions

To learn with gradient descent, an error functialsq called a cost, loss or objective
function) is applied to measure the deviance of ehgaedictions from true values of
problem instances. Although machine learning meteas been mainly concerned with
classification problems, gradient descent procesjusech as backpropagation, do not
allow direct minimization of the number of miscldiesl training patterns (Duda, Hart, &

Stork, 2001). Hence, the error function must benfdated such that classification
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accuracy is increased as objective error is mirechizA problem with conventional error
functions (i.e., SSE and CE), however, is that ttheyot always decrease monotonically
with classification error (LeCun, Denker, & Soll#990). This, combined with other
practical issues listed below, suggests that ANNsy rhe better suited to learning

classification tasks by means of other error fuondi

Learning to classify a pattern frolclasses is often viewed as a regression problem wit
anN-valued response, with a target value of 1 inrfﬁ@osition if the observation falls in
classn and 0 otherwise (LeBlanc & Tibshirani, 1993). Madues of zero and one can be
considered idealized, “true”, or hard target valuétowever, ANNs have a real-valued
output vector and are able to represent more gesetations than simple Boolean
decisions. In practice, there is no reason whyvort solutions should require 0-1

values.

Using hard targets for training creates practicabjems for ANNs. In order to output
values approaching 0 and X1( for hyperbolic tangent), network weights must
necessarily grow large. Also, since different jpo$ of the problem tend to be learned at
different times during training, using hard targefien leads to premature weight
saturation, making it harder and slower to learttepas that have yet to be learned
(underfitting), while forcing the learner to ovenbatterns that have already been learned.
One common way to deal with this is to use “softargets like 0.1 and 0.9. This

presents a less severe alternative but still suffem these issues.
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Rankprop (Caruana, Baluja, & Mitchell, 1996) prasdan alternative method to training
with 0-1 target values that exhibits empirical tesprovement when measuring the area
under the ROC curve. Rankprop records the outpuhe learner for each training
pattern. It then sorts the patterns in the trgrset based on class, then according to
output values. Thus, a rank of the patterns cterdisvith the current model is developed
and used to define the target values on the nedhepThe idea behind Rankprop is that
in the case of complex nonlinear solutions a simpéss nonlinear function is learned

instead.

The validity of using conventional differentiableeasures like SSE as an objective
function to minimize error relies on the assumpttbat pattern outputs are offset by
inherent Gaussian noise, being normally distributdzgbut a cluster mean. For
approximating the function of an arbitrary sigriastpresumption often holds. However,
this assumption is invalid for classification taskbere 0-1 target vectors are arbitrary

values used to represent class labels.

Cross-entropy (CE) assumes idealized class oupetstarget values of zero or one for
a sigmoid activation) rather than noisy outputsdass SSE (Mitchell, 1997) and is

therefore more appropriate to classification protde CE is also preferable to SSE when
the output class distributions are not balanceaweéver, by nature, CE also tends to

weight saturation.
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The classification figure-of-merit (CFM) objectivéunction was introduced in
(Hampshire 11, 1990) for learning classificatioroplems when it was shown that SSE
and CE errors are not necessarily correlated vassdication accuracy. CFM separates
the values of network outputs by as large a rasgeoasible such that error minimization
is monotonic with increasing classification accyracLike SSE and CE, this metric
encourages weight saturation, which is often indieaof overfitting and detrimental to

generalization (Bartlett, 1998).

3 Classification-based error functions

Overfit is typically considered a global phenomendfowever, the degree of overfit can
vary significantly throughout the input space. @2era, Lawrence and Giles (2000) show
that overly complex MLP models can improve the agpnation in regions of

underfitting, while not significantly overfittingni other regions. However, their
discussion is limited to function approximationkasand not classification problems,
which are affected in a different way by bias-vac@ interactions (Friedman, 1997,

Domingos, 2000).

A model’'s biasand variance, as defined in (Geman & Bienensto@92), can be
intuitively characterized as the model's error aisl sensitivity to training data,
respectively. Domingos (2000) formally definessbé&s the loss incurred by a model’s
main prediction (the most common prediction forssléiers) relative to the optimal

(Bayes) prediction and variance as the averagedbsgwdividual predictions relative to
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its main prediction. Bias is independent of thening set and is zero for an optimal
predictor. Variance is independent of test acoueand is zero for a learner that does not
take the training set into account when formingyadthesis. There is an inherent
tradeoff between fitting a limited training datangde perfectly and generalizing
accurately on the entire population (Sharkey, 199fder these definitions, it is proven
in (Friedman, 1997) that low squared-error biasias important for classification, but
rather 0-1 bias, and classification error may bduced toward optimal by reducing

variance alone (e.g., by using a cost function sbbuidiosyncrasies in the training data).

The goal of training a neural network for classifion is not to minimize the error
between predetermined target and output valuesather to produce output vectors that
can be accurately translated to correct classifinat There are several possible ways to
process the network’s output vector in calculatmgerror signal for backpropagation to
fit the data properly. A simple variant of using @argets involves augmenting the error
function with a maximum error tolerance threshalgs, which is the smallest absolute
output error to be backpropagated. In other wogd&ndmax > 0, a target valug;, and
network outputp;, no network update occurs if the absolute ertpr[o; | <dmax This
threshold is arbitrarily chosen to represent atpatirwhich a pattern has been sufficiently
approximated (usually 0.1, yielding target valu€8.@ and 0.9 instead of 0 and 1). With
an error threshold, the network is permitted to vemge with smaller weights
(Schiffmann, Joost, & Werner, 1993). Weight dedyogh & Hertz, 1992) is a
regularization approach that can discourage pramatueight saturation and may

improve generalization. More dynamic approachesh @s Rankprop (Caruana, 1995),
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avoid the use of predefined hard targets, setamgged soft target values for the training
patterns each epoch. CB error functions are mymardic, calculating soft targets online

for each training pattern based on the networkisecu performance.

3.1 CB1 error function

Without loss of generality, it is assumed thatragkd, distinct output node in the network
represents each class label. Kebe the number of output nodes in a network (and
distinct class labels). Lei designate the activation value of a node<(® < 1 for
sigmoid). Letoy be the activation value of tH&" output node in the network. L&t
designate the target class for the current traipiern andy signify the class label of
thek™ output node. For target output nodgss T, and for non-target output nodes#

T. Non-target output nodes are calznpetitors

Let ormax denote the maximum value among target output npaesig that there may be

only one target node in many problem formulations),

OTmax= Ok : Ck = T.

Let o-tmax denote the value of the competitor outputtingrtighesto,

O-tmax= Max {ox:ck# T}

The error signak, back-propagated from tHhe output node is defined as
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MiNQO_7 ot 4= 0D if ¢ =T and(0_y o + 42 0r )
Sk = maX(OT max lu - Ok’_l) If Ck 7 T and(ok 2 0Tmax - /'1) (1)
0 otherwise

wherey is a value between 0 and 1 that serves as an@roanfidence margin between
the outputs of target and competitor nodes, and-/h)rand max(-1) enforce the [-1,1]

range limit of the logistic function. Representedlosed form, the error (1) is

8k = min(0~Tmax +lu_0k ’1) I (Ck :T a'nd(0~Tmax +lu 2 onax)) +

maX(OT max /'1 - Ok’_ 1) I (Ck 7 T and(ok 2 0Tmax _lu)) (2)

where | is the indicator or characteristic function. Thssthe error function to be
minimized during training. Observe that whefmax + 4 < Ommax, NO error signal is
backpropagated from the target output. Converd$etya competing nodk with output

Ok, Whenoy < otmax - & N0 error signal is backpropagated fremThe error delta used for

backpropagation is

& =& f (o)

wheref (o) is the standard error gradient, which is

f'(o) =ok(l-0k)
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for a sigmoid squashing function, and can be rem@reoutput nodes when using cross-
entropy (Joost & Schiffmann, 1998). A more dethitiscussion of CB1 is found in

(Rimer & Martinez, 2006a).

3.2CB2

CB2 (Rimer & Martinez, 2004) replaces the use simgle error function with a mixture
taking advantage of both CB1 and SSE/CE optiminaéibappropriate times during the

learning process. The heuristic is as follows:

For each training epoch, let the error maggm t/T, wheret (1 {0, 1, 2, ...}

is the current epoch arfdis the maximum number of epochs to train.

CB2 causes a smooth transition from CB1 to SSE/@Emization as the search

progresses. The CB1 exploration phase first stberslecision surface toward a general
problem solution without saturating network weigiptematurely. Then, as learning
tends toward SSE/CE exploitation, the distancdefdecision boundary from proximate
patterns is maximized. This approach is analogousimulated annealing. CB2 has

been shown to have smaller generalization variandested applications than CB1.

3.3CB3

CB3 (Rimer & Martinez, 2006b) extends CB1 and CBHzhburistically calculating how

much error can be tolerated in each training patieerorder to improve generalization
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based on how well the network is learning. Thathg error function itself is learned
based on the network’s ability to learn it. CBX@uoplishes this by observing how
confident the network is in classifying each trampattern as learning progresses. This
method is shown in Figure 1. CB3 augments preddferror functions in the following

three ways:

* For each (pattern, output node) pair, a confideratee is stored and modified over
time. This value represents a margin within thegeaof the squashing function that
reflects the numeric amount by which the node ssstiag in classifying the pattern
correctly or incorrectly.

» As training progresses, target output values fohgmmttern are calculated using these
learned confidence values.

* The error function is set by these target valudsis decides how large an error

signal to backpropagate.

In the initialization phase, confidence values seefor pattern-network output combined
pairs. These values indicate the amount of confide¢he network’s output nodes expect
to have in classifying the corresponding pattermemly. Positive values semantically
indicate a pattern is expected to be classifiedectly while negative values mean it is

expected to be misclassified. These values arategds training progresses.
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Initialization.
Set expected confidence valu€s;, for each pattern-output node pair.

Training.
Present a training patteinnto the network.
DetermlanmaX and0—~Tmax.

1. For each output node set its target outputy,:

Ormxt(C,+a) ifc,=TandC, A >0
Ormax — (G, +a) ifc #TandC, >0

T = 1
" O max if c,=TandC,<0 @
Or max if c,#TandC, <0
2. From each output noag backpropagate errag;.
T -0, if c,=Tando,<T,
en=<T -0, ifc,ZTando,>T, (2)
0 otherwise

3. For alln, iteratively update confidence val@g, to make it closer to the observed
interval.

Ci,n = Ci,n +7c (Oln - Ci,n) (3)

whereyc is a small (~0.01) confidence learning rate arddbserved intervaDl,, is
defined as

Ol,

On _0~Tmax if Cn =T
(4)

ifc,zT

max _on

Continue training until stopping criterion is séad.

Figure 1. CB3 algorithm.

For each training pattern, its vector of targeuealis determined (Figure 1, equation 1).
Each output node’s target value is calculated rilyi depending on whether it
represents the target class and whether the cowefdealue for that node is positive or

negative. The value determines how aggressively CB3 will try to sepatarget values
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for opposing classes. A value of zero will allavgets to remain close together while a

greater value will separate them more.

Based on the calculated target vector, the ergmwasifor backpropagation through the
network is determined (Figure 1, equation 2). @les¢hat no error is backpropagated
from an output node when its value is already cldasethe corresponding limit of the

squashing function than the calculated target.

Following backpropagation, the meta-learning stdpiteratively updating learned
confidences used in calculating the dynamic tangdties (Figure 1, equation 3) is
performed. First, the observed interval (the défece between output node values on
positive and negative class labels) vector is nreds(Figure 1, equation 4), respective to
each output node. Then, as an error delta is leagclifor iterative weight updating to
bring output values closer to the target values, larned confidence valug, is
subtracted from the observed inter@d}, and multiplied by small, positive learning rate
nc to calculate a confidence value delta. This defce delta is added to the learned

confidence.

As training continue<C; , will be iteratively learned. It reflects the atyilof the network

output nodes to locally distinguish the target €lasm the others. Learning this value
has the practical purpose of hinting to the netwehkch patterns can be classified with
confidence (such as cluster centers), which pateeed to be learned more (fringe

patterns), and which patterns appear difficulte@arh correctly with the current network
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at all (noise or overlapping classes). This ergmlthee training process to guide the
network to spend more resources on learning trgirpatterns that most probably
contribute to higher generalization accuracy whé&ectively ignoring those that lead the

network to overfit or weight saturation as it atgmto learn them.

The CB3 error function introduces three new leagnuarametersC;,, the confidence
pattern-class vecto#c, a confidence learning rate, asda confidence multiplier used in
separating competing output node target valuesall lexperiments presented he@, =
0.25,57c = 0.01, andx = 1.5 These values were shown to perform uniformly wetbas

several test applications (Rimer & Martinez, 2006b)

4 Experiments

Experiments were performed comparing six error fions: sum-squared error (SSE),
cross-entropy (CE), CE WD (cross-entropy with weiglacay ofA = 0.00001 (Krogh &

Hertz, 1992)), CB1, CB2, and CB3. Eleven benchmapbklications from the UC

Irvine Machine Learning Repository (UCI MLR) (BlakeMerz, 1998) were used in
testing (see Table 1). The problems were selesteds to have a wide variety of
characteristics (size, number and type of featuwesiplexity) in order to analyze the
robustness of these error functions to varyingreey conditions. Feature values

were normalized between zero and one.
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To learn each problem, a fully connected feed-fodweetwork with one output node per
class label and a single hidden layer trained ginoonline backpropagation was used.
Training patterns were randomly shuffled before he@poch. An error tolerance
threshold @max described in section 3) of 0.1 was used. Pattdassification was
determined byinner-take-all(the class of the highest outputting node is chpsarall
models tested. Training continued until the tragnset was successfully learned or until
a decrease in classification error on a holdoutset not observed for 500 consecutive
epochs. The model selected for testing was the witke the best holdout set

classification accuracy. Results were collectedgu$0-fold stratified cross-validation.

4.1 Training parameters

Four network learning or model parameters were asezbntrol variables:

» initial network weight values

* pattern presentation order

» |earning rate, and

* number of hidden nodes.
These parameters have been shown to be influgntialultilayer perceptron learning
over repeated studies in the literature. Numeteubniques of setting these learning
controls have been put forth, including heuristiderof-thumb approaches, tuning by
empirical testing, or based on more sophisticatgdrithms (Campbell & Coombes,
1995; Thimm and Fiesler, 1997; Istook & Martine®02). Rather than show how the
error functions perform under specific conditionghwoptimized parameter values, our

goal is to present their robustness across theeeptactical range of parameter values
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(see sections 4.2 to 4.5). In other words, we weterested in how each condition
affects the performance of each error function, ateb whether any error function

dominates (outperforms the other error functionssgall parameter values).

Except where noted in each experiment in this gectearning parameter controls were
fixed as follows. Network weights were initialized uniform random values in the
range [-0.1, 0.1] (Thimm and Fiesler, 1997). Rattpresentation order was set by
always shuffling the order using the same randoed.seLearning rate was 0.1 and
momentum was 0.7. The number of hidden nodes wasdselected by determining the
minimum size required to achieve near (within 0.54¢ best holdout set accuracy
observed with each of these error functions (dsedsfurther in section 4.5). The
datasets, number of patterns in the set, and nktarchitecture used for each dataset are

listed in Table 1.

Table 1. Datasets and network architectures.

Dataset # Patterns| Network
ann 7200 21-30-3
balance 625 4-6-3
bcw 699 9-10-2
derm 358 34-5-6
ecoli 336 7-8-8
lonosphere 351 33-9-2
irs 150 4-2-3
musk2 6598 166-5-2
pima 768 8-9-2
sonar 208 60-15-2
wine 178 13-16-3
133

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

4.2 Effect of variance in initial network weights

First, we evaluated the influence of variance itiahnetwork weights on test accuracy.

We performed ten-fold stratified cross-validatitirtly times on each data set, each time
with a distinct random seed used in initializingwark weights. That is, one seed value
was used for all tests on the first run, a seca®tlsised for all tests on the second run,

etc.

Figure 2 shows aggregated test accuracies and 8b%idence intervals for these error
functions by column. Results for a support-vechachine using the LIBSVM software
library with optimal parameter search (Chang & L#901) are included in the first
column for baseline comparison (without the netwodnfidence intervals shown for

variance in initial parameter settings).

The neural network models performed significantiytér than an optimal SVM on these
datasets. Varying only initial weight paramet&€81-3 and CE performed significantly
better than SSE. CB1 and CB2 performed better tG&n on average, but not
significantly. CB2 has the tightest confidencesiaal, indicating that it is most robust to
variance in initial weight values. CB3 has sigraftly better test accuracy than all other
algorithms. This would indicate that CB3 perforthe best, and CB1-3 and CE will
outperform SSE, given the specified learning patarsefor any reasonable sets of initial

network weights in the distribution we used.
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Varying Initial Weights

94

93.5 | I
93 +

92.5 +

o2 | |

91

90.5

SVM CB1 CB2 CB3 CE CE w/ WD SSE

Figure 2. Test performance averaged over thirty runs witfedint initial weight
settings.

4.3 Effect of variance in pattern presentation orde

Next, we determined the influence of varying pa&teresentation order. Each
application was tested thirty times, with seed galwf 1 to 30 used to shuffle the
patterns. That is, one seed value was used ftesal on the first run, a second seed used
for all tests on the second run, etc. The resflthis test are more applicable to real-
world ANN usage than the study in section 4.2 bsedahe effect pattern presentation
order has subsumes the effect of initializing teework to any sufficiently small random
weights. An intuitive reason for this is that #meor backpropagated due to presenting a
certain training pattern (i.e., input vector) geallgr results in a distinct set of weights
than from presenting any other pattern. Henceg¢hlviraining patterns are stochastically

presented first to the network influences the diioecof updates more than how the
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initial weight values given affects subsequent epdirection. Naturally, this logic does

not apply to batch training, but does apply to Aaich approaches.

The same initial network weight values were usecdech algorithm on a given dataset.
All other parameters were set as before. The aggtgd test accuracies with 95%

confidence intervals are shown in Figure 3.

CB1-3 and CE performed significantly better than @B and SSE. CB2 performed
better than CB1, and CB1 better than CE, but no®%% significance. CB2 is
significantly better than CE, and CB3 exhibits thghest test accuracy by a significant
margin. CB3 also has the tightest confidence irtiefollowed by CB2, indicating these
error functions are most robust to pattern presiemtarder. This indicates that, given
the specified network architectures and learnirtg, r&@B3 outperforms the other error
functions on these datasets for reasonable seisital network weights and pattern
distributions. Consistent with the notion thattpat presentation order has a greater
influence on the final state of the network thaesithe initial network state, it may be
observed that average test error is lower and dendie intervals are wider in Figure 3

than in Figure 2.
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Varied pattern presentation order

94

93.5

93

92.5 |
I

92 | |

91.5

CB1 CB2 CB3 CE CE w/ WD SSE

Figure 3. Test performance averaged over thirty runs witfedint pattern presentation
orders.

Table 2 lists the standard deviation in test acgufan percent) due to pattern variance

across the training set partitions used in 10-foloss-validation, averaged over all test

runs performed in this section, plus or minus a ¥s#fidence interval. Observe these

values are much greater than deviation in accudasy to initial network weights or

pattern presentation order. Squared-error costtifums exhibit the highest model

variance and CB3 exhibits the lowest variance.

Table 2. Aggregate standard deviation in test accuracpéncent) due to pattern

variance.

CB1 CB2 CB3 CE CE WD SSE
5.47+1.02| 5.42+1.01] 5.04+0.94| 5.60+1.05| 5.62+1.05| 5.66+1.06
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4.4 Effect of varying the learning rate

Third, the influence of learning rate was evaluat®¥de re-ran the tests thirty times, each
time using a learning rate from 0.01 to 0.3 in amf increments. Generalization
accuracy, averaged over the applications testedhasvn for each error function and
learning rate in Figure 4. Confidence intervale aot shown here for clarity, but

remained near the ranges shown in Figure 3.

94

93.5 -

93

—e—CB1
—a—CB2
——CB3

92.5

——CE
———CE WD
—«—SSE

Test Accuracy
(=]
N

91.5 -

91

90.5

90

0.01 0.06 0.11 0.16 0.21 0.26

Learning Rate

Figure 4. Average test accuracy over applications at varieasing rates.

CB1'’s performance is less at a learning rate bedolvand roughly steady above 0.1.
CB2 performs best with a learning rate between @b 0.25. CB3 performs best at a
learning rate of 0.1 or higher. SSE performed hbyighe same for learning rates above

0.05 and worse for learning rates below 0.05. H@neCE and CE WD performed best
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for learning rates of 0.1 or less and their perfamoe degraded steadily for greater
learning rates. We surmise this is due to havingnach higher error signal
backpropagated through the network for a givenetaogitput difference than any of the
other error functions, making it difficult to comge with larger step sizes. While the
other algorithms perform roughly the same for theggglications and random seed, given
their optimal learning rate, CB3 is shown to always perform ificgmtly better than the
other error functions foany learning rate above 0.05. This is useful to knéav, it
indicates that CB3 performs well without learnirager tuning for specific applications.
The possibility of removing the backpropagationri@ag rate parameter entirely from

CB3 training is slated for future work.

4.5 Effect of varying the number of hidden nodes

It is sometimes believed that networks with too ynaegrees of freedom generalize
poorly. This line of reasoning is based on twoerntations: (1) that a sufficiently large
network is able to memorize the training dataafrting continues long enough, and (2)
even with early stopping approaches, it is not egatavhether some form of overfit has
occurred. By reducing the learning capacity ofhsacnetwork, it is thereby forced to
generalize as it no longer has the capability tonoreze the training data. In order to
perform a proper theoretical analysis of networgacdty and generalization, the search
heuristic must also be taken into account (Caru&af8y7; Caruana, Lawrence & Giles,
2000). Gradient descent search heuristics do me¢ @ll hypotheses an equal
opportunity. The inductive bias of standard baokpgation is to start with a simple

hypothesis (through usually small, random weiglgeyl make the hypothesis more
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complex (by increasing the magnitude of the weighistil the network sufficiently
learns the problem. Thus, backpropagation is Higsgvard hypotheses with small
weights, examining solutions with larger weightdyoas dictated by necessity. Excess
network capacity does not necessarily hinder gémat®n, as learning stops as soon as
possible. This means that generalization candsedensitive to excess network capacity,
and that using a network that is too small can lyemeralization more than using

networks that are too large (Caruana, 1997).

To verify this, we tested how well each error fumetperforms over a range of network
sizes. For this experiment, we reran the aboverxent thirty times, using networks
where the number of nodes in the hidden layer wased from 1 to 30 nodes.
Generalization, averaged over the applicationsedess shown for each error function

and number of hidden nodes in Figure 5.
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Figure 5. Average test accuracy over applications at varieasiing rates.

For this application corpus, all error functiongpegximated their best demonstrated test
accuracy with six hidden nodes or higher. Thisnikeeping with observations that
proper early stopping heuristics are more importanhetwork generalization than the
number of hidden nodes in a sufficiently large retw(Caruana, Lawrence & Giles,
2000) and that stopping learning before the glayabr minimum has the effect of
network size selection (Wang, Venkatesh, & Judd4)9 However, CB3 performed
significantly better than the other error functicasoss all networks of matching size.
Also, CB3 networks of four or more hidden nodedqrened better than networks trained

using the other error functions afy size.
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The results of sections 4.2-4.5 indicate that CB3ai better classification learner,
independent of network size, learning rate, andsihcrasies in initial network

conditions and pattern presentation order.

5 Analysis

It has been shown that the number of nodes in wanktis not as influential as the
magnitude of the weights (Bartlett, 1998). Theolopgy, rather, serves more as a
mechanism that lends itself to solving of certainlgems, while the weights represent
how tightly the network has fit itself to the (adtedly incomplete) training data
distribution. Network complexity is defined in (\Wg Venkatesh, & Judd, 1994) as the
number of parameters and the capacity to which #reyused in learning (i.e., their
magnitude). They show it is best to make mininsd of the capacity of the network for
encoding the information provided by the learnirdt@rns, which is in keeping with the

methodology of CB error functions.

5.1 Network parameter sizes

Problems of premature weight saturation, such aeitting and increased model bias,
were discussed in section 2. Here we examine tat whtent the error functions we
tested encourage weight saturation. Using the or&twizes and learning parameter
values listed in section 4.2, we performed a trafenetwork weight parameter
magnitudes during training. We observed that CRB8&ins the smallest weight

magnitudes during the entire training processp®dd in order by CB1, CB2, SSE, CE
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WD, and CE, which induces the largest network patams. For brevity, we present
histograms of network weight magnitudes while lesgnthe bcw dataset only (see

Figures 6a-f), noting that this relative orderingasw observed across all tested
applications. On each graph, note that at epoctl @yeights are almost 0. As training
progresses, these weights tend to become largegureF7 is a condensed version of

these, showing the mean weight size during traifongach error function.

Generally, weight magnitudes of 1.0 or less aresiclaned to be in the approximately
linear region of the sigmoid squashing functionjlevparameters become saturated (i.e.,
enter the asymptotic region of the sigmoid) withluea above 2.0. Figure 6a
demonstrates how CB1 avoids saturating weightsh(itie exception of a single bias
weight in the situation shown here). CB2’s behaiigure 6b) is very similar to that of
CB1. It can be observed how the steadily increpsialue foru (recall its use as a
margin booster, mentioned in section 3.2) makedlsn&aghts larger at a slow, even
pace. Using CB3 (Figure 6c), most network weigktsain in the linear region of the
sigmoid. The smoothness of CB3’s weight histogeamoss training reflects the intuition
that CB3 alters pattern target values methodicalithout straining the network’s
capacity. It is conceivable that CB3 will also beé well using simpler linear output

activations without further algorithm modification tuning of training parameters.
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Figure 6a.Weight magnitudes as training progresses with CB1.
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Figure 6b. Weight magnitudes as training progresses with CB2.
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Figure 6¢.Weight magnitudes as training progresses with CB3.
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Figure 6d. Weight magnitudes as training progresses with SSE.
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Figure 6e.Weight magnitudes as training progresses with CE.
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Figure 6f. Weight magnitudes as training progresses with QB weight decay
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Mean Weight Magnitude
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Figure 7. Mean weight magnitude as training progresselsam

SSE (Figure 6d) produces larger average weights@i&l-3, and it can be observed how

network parameters saturate steadily from the fieshing epochs. CE (Figure 6e) has

the greatest tendency to weight saturation becausealefined to calculate the greatest

error signal of all these error functions for aegiviearning rate. Hence, well behaved

learning rates tend to be less for CE than for 868& CB1-3. A smaller learning rate

provides smoother convergence and slows weightatain. However, these are often

achieved at the cost of a greater number of trgimpochs before stopping (i.e., the

epoch from which the final/best network model iested). We have observed that the

models with the highest holdout set accuracy haughly the same average weight

magnitude, regardless of (reasonable) learning ralberefore, it is difficult to say

whether small learning rates provide any practiogirovement for SSE or CE with

respect to avoidingpremature weight saturation.
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demonstrably ameliorate the saturation of weighigure 6f), although the phenomenon

of saturation is still readily observed.

5.2 Classifier output difference

Before training, networks initialized with smallandom weights typically have high
mean squared-error. It has been shown that highracy network solutions exist where
measured squared-error is nearly as high as a retwamprised of small, randomly
initialized weights (Rimer & Martinez, 2006a). §hevidence, coupled with the radically
distinct weight distributions observed above, lenedence to the notion that CB error
functions induce a fundamentally different searthypothesis space than squared-error

or cross-entropy optimization.

We explore this further by calculating the classifoutput difference (COD) distance
described in (Peterson & Martinez, 2005) among meéwork solutions from the
experiments performed above. The COD distance dmtwwo hypotheses is the
frequency (a real value between 0 and 1) that digggree on pattern classification. This
distance can be estimated by observing the frequhrat the hypotheses$i; and H,,

disagree with each other on the classificatioresf patterns:

Do (HL(X) # Hy (X))

6T(H1’H2) = |T|

whereT is the set of test patterns anid the indicator or characteristic function.
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We calculated aggregate COD distances for the hggets selected for the experiments
in section 4.3, both within the group of hypothesekiced by an error function, which
we will call intra-classcomparisons, and also against the hypotheseseobttier error
functions, orinter-classcomparison. Table 3 lists the COD distances,agest across all
applications and test runs. Intra-class distamacesshown along the diagonal and inter-
class distances are shown in non-diagonal cellis Matrix is symmetric, so the values
in lower triangle are omitted here for clarity. é&mage inter-class COD for each error
function and the difference of this value from ftintra-class COD (“distinction”) are

shown in the bottom two rows.

Table 3. COD distances.

Error CE

functon |CB1 |CB2 |CB3 |CE WD SSE
CB1 .0282 | .0368% | .0431 | .0435 | .0449 | .0494
CB2 .0302 | .0404 | .0408 | .0439 | .0429
CB3 .0260 | .0461 | .0493 | .0483
CE .0330 | .0354% | .0417
CE WD .0338 | .0442
SSE .0344
average | .0435 |.0409 | .0455 | .0415 |.0436 | .0453
distinction | .0153 | .0107 | .0195 | .0085 | .0098 | .0109

Similar error functions have low COD when compatedne another, and vice-versa.
Here, CE and CE WD have the lowest distance froe amother (cell denoted by the
superscript ‘1"), followed by CB1 and CB2 (denotedthe superscript ‘2’), which is as

we would expect due to their similar natures.

For these models (from section 4.3), intra-clasDCDows behavioral test difference

due to randomness in pattern presentation of otkerwdentical training situations.
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Smaller intra-class COD is suggestive of less vagan the error function. The relative
ordering of values along the diagonal is generafigsistent with the relative sizes of
confidence intervals shown in Figure 3. In botsesa CB3 has the smallest variance,

showing it to be the most robust of these errocfions in this regard.

The difference between intra- and inter-class desa (shown in the bottom row of
Table 3) translates to distinction in the partic@eor function’s behavior. A distinction

of zero indicates the behavioral difference of thisor function from the others is on
average functionally indistinguishable from intlass model variance due to pattern
presentation order. Positive non-zero values atdicthat the error functions are
measurably distinct from the others. CB3, followsdCB1, show the greatest level of

behavioral distinction from the other error funaso

Table 3 may be depicted in three-dimensions byutating a best fit reduction of the
five-dimensional (non-Euclidean) COD distances agniirese error functions (see Figure
8). In general, the sphere volumes represent-ahigs COD on the considered
applications and may be interpreted as approximgteesentations of the variance of
solutions that networks using a particular errarction converge to, given the training
parameter settings. Inter-class COD is depictedhbydistance between centers. The
farther apart two spheres are, the more often Igsets of the two error functions
disagree. Observe the CB error functions are betaly closer to one another than to
the squared-error functions. CB3 has the smadlelsere, illustrating it has the lowest

model variance.
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B2

BT

3

Figure 8. COD distances of Table 3 in three dimensions.

These error functions’ 95% confidence intervalsezavrange of 0.2-0.3% (see Figure 3).
However, their average intra-class COD distancagadrom about 2.6% to 3.4% (see
Table 3). This indicates much greater behaviomiance across solutions than is
observable solely through observing variance in s&suracy. Furthermore, while

difference in test accuracy across error functisnabout 1-2%, Table 3 shows average
behavioral difference across these error functionise greater than 4%. With test error
averaging about 7-8% (see Figure 3), this indicatdsw correlation of classification

errors across error functions. It is thereforelijkthat combining models induced by

different error functions into hybrid ensembles vating committees would produce
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higher test accuracy than that of homogeneous dsleem This will be considered in

future work.

6 Conclusion

The CB1-3 error functions generalize significaftétter than squared-error minimization
over the tested classification applications on ager CB3 generalizes significantly
better than the other error functions tested andast robust to pattern variance, initial
network weight values, pattern presentation ortkamning rate, and number of hidden
nodes, suggesting it operates consistently weh witnimal or no parameter tuning or

operator intervention in the training process.

Observing the magnitude of network weight paransedeiring training showed CB error
functions avoid premature weight saturation onpgheblems tested. It was also shown
that classification errors between networks traimeth different error functions have

relatively low correlation. It is expected thatbiigl ensembles or voting committees of
CB, SSE, and CE error functions will reduce testrermore than homogeneous

ensembles of networks trained using any of these &mctions.

Acknowledgments: We thank Adam Peterson for theofi$es 3-D rendering tool.

152

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

References

Bartlett, P. (1998). The Sample Complexity of &wait Classification with Neural
Networks: The Size of the Weights is More Import#ran the Size of the Network.

IEEE Trans. Inf. Theory, 44;%525-536.

Blake, C. & Merz, C. (1998). UCI Machine Learning epository,
http://www.ics.uci.edu/~mlearn/MLRepository.html. rvine, CA: University of

California, Department of Information and Compuserence.

Campbell, C. & Coombes. S. (1995). Determining@mpimal Number of Hidden Nodes
in a Feed-Forward Neural Network. Dept. of Engrmeg Mathematics, Bristol

University.

Caruana, R. (1995). Learning Many Related Tasksthat Same Time With
Backpropagation. Advances in Neural Information Processing Syst@iiBS) 7, pp.

657-664.

Caruana, R., Baluja, S. & Mitchell, T. (1996). kgithe Future to ‘Sort Out’ the Present:
Rankprop and Multitask Learning for Medical Riskaiwation. Advances in Neural

Information Processing SysteiidlPS) 8.

153

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

Caruana, R. (1997)Multitask Learning Ph.D. Thesis, School of Computer Science,

CMU.

Caruana, R., Lawrence, S. & Giles, C. (2000). @wweg in Neural Networks:
Backpropagation, Conjugate Gradient, and Early @tap Proceedings oNeural

Information Processing SysterfidIPS)13.

Caruana, R. & Niculescu-Mizil, A. (2006). An Emipal Comparison of Supervised
Learning Algorithms. Proceedings of t@&“ International Conference on Machine

Learning

Chang, C. & Lin, C. (2001). LIBSVM: a library fosupport vector machines.

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Domingos, P. (2000). A Unified Bias-Variance Degmsition for Zero-One and

Squared Loss. Proceedings of 17¢h National Conference on Atrtificial Intelligence

Duda, R., Hart, P. & Stork, D. (2001Rattern Classification2™ edition. John Wiley &

Sons, Inc.

Friedman, J. (1997). On Bias, Variance, 0/1-Lass] the Curse-of-Dimensionality.

Data Mining and Knowledge Discovery, 135-77. Kluwer Academic Publishers.

154

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

Geman, S. & Bienenstock, E. (1992). Neural Netwakd the Bias/Variance Dilemma.

Neural Computation, ,41-58.

Hampshire I, J. (1990). A Novel Objective Funatidor Improved Phoneme
Recognition Using Time-Delay Neural NetworkslEEE Transactions on Neural

Networks, 12.

Istook, E. & Martinez, T. (2002). Improved Backpagation Learning in Neural
Networks with Windowed Momentum. International @l of Neural Systems, 12(3-4),

303-318.

Joost, M. & Schiffmann, W. (1998). Speeding uglgaopagation Algorithms by using
Cross--Entropy combined with Pattern Normalizationinternational Journal of

Uncertainity, Fuzziness and Knowledge-based SystididBEKS), 62, 117-126.

Krogh, A. & Hertz, J. (1992). A Simple Weight Dgc€an Improve Generalization.

Advances in Neural Information Processing Syst@hiRS)4, San Mateo, CA, 950-957.

LeBlanc, M. & Tibshirani, R. (1993). Combining iesates in regression and

classificationNeuroProse

155

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

LeCun, Y., Denker, J. & Solla, S. (1990). OptinBakin Damage. In Touretzky, D.
(ed.), Advances in Neural Information Processing SystéNI®S) 2 598-605. San

Mateo, CA: Morgan Kaufmann.

Mitchell, T. (1997). Machine Learning.McGraw-Hill Companies, Inc., Boston.

Peterson, Adam H. and Martinez, Tony R. (2005). tinkzsing the potential for
combining learning models. Proceedings of tDBIL Workshop on Meta-Learnin8-

75.

Rimer, M. & Martinez, T. (2004). Softprop: Softméleural Network Backpropagation
Learning. Proceedings of thEEE International Joint Conference on Neural Netkgo

[JCNN’04, 979-984.

Rimer, M. & Martinez T. (2006a). Classificationdesl Objective FunctionsMachine

Learning 63:2, 183-205.

Rimer, M. & Martinez T. (2006b). CB3: An Adaptiv&rror Function for

Backpropagation TrainingNeural Processing Letter24:1, 81-92.

Salzberg, S. (1999). On Comparing Classifiers:Crtique of Current Research and

Methods. Data Mining and Knowledge Discovery;, 11-:12.

156

www.manaraa.com



Chapter 6. Analysis of Classification-based Errondtions

Schiffmann, W., Joost, M., & Werner, R. (1993). on@parison of Optimized
Backpropagation Algorithms. Artificial Neural Networks European Symposium,

Brussels.

Sharkey, A. (1996). On Combining Artificial Neurdets. Connection Science,; 384,

299-313.

Thimm, G. & Fiesler, E. (1997). High-order and Kkilaler Perceptron Initialization.

IEEE Transactions on Neural Networl&2, 249-259.

Wang, C., Venkatesh, S., & Judd, J. (1994). Ogtist@pping and effective machine
complexity in learning. In Cowan, J., Tesauro, & Alspector, J. (eds.)Advances in
Neural Information Processing Systems (NIP$S)3@83-310. Morgan Kaufmann, San

Francisco.

157

www.manaraa.com



Chapter 7

Improving Posteriors with Point-wise Local Binning

Michael Rimer, Adam Peterson and Tony Martinez

Department of Computer Science, Brigham Young Usitg Provo, UT 84602

Abstract. Recent work has shown the efficacy of calibratiegrihing model outputs to
provide more accurate probability predictions. Wesent a novel point-wise local
binning method, PL1, for calibrating model outpaisd measuring model calibration
fitness. This method is compared to modern metfamdsiodel calibration: Platt Scaling
and Isotonic Regression. While these methods Hheen shown previously to not
improve neural network calibration fitness or cifasation accuracy, we show that PL1
does significantly reduce neural network calibmatesror to improve general probability
predictions. We also quantitatively compare PLI1stonic regression on naive Bayes,
k-nearest neighbor, and bagged decision tree enesmbdr which they perform

comparably.

1 Introduction

In many machine learning applications, it is impattfor the learning model to yield
accurate posteriors, for instance, when the casttilon is asymmetric or unknown, or
where the outputs of one layer of a multi-tier egstare used as probabilities by another.
In these situations, achieving high classificatameuracy may not be sufficient. Certain
learning methods output values that may be usedralBt as posteriors, such as

softmaxed neural networks and bagged decisioneimeembles. Other learning models
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do not output posteriors, such as decision treesnay output biased posteriors (e.g.

naive Bayes and SVMs) [1].

Reliability diagrams [2] are commonly used in vikziag model calibration for real
problem domains where true conditional probabsitere not known. The accepted
method for generating these diagrams involves elizing the prediction space into a set
number of exclusive bins and plotting the mean ipted value against the true (i.e.,
empirically measured) fraction of positive casesr a well-calibrated model, predictions
will fall along the diagonal line, representing adel whose confidence matches the
actual posterior probability for a given data sste( Figure 1). Calibration mean-squared
error (CMSE) is calculated by averaging the squalisthnce of the model’'s prediction

from the measured posterior across all bins.

Another way of calculating reliability is by usirayproper scoring rule, which has the
properties of maximizing score when the model owstorrect probabilities, while also
discriminating optimally with respect to classificem. One such example of a proper

scoring rule is sum-squared error, also calledBtter score [3].
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Reliability Diagram
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Figure 1. Reliability diagram using the conventional 10-biethod.

In certain cases, introducing a post-processing stanodel output calibration, such as
Platt Scaling [4] or Isotonic Regression [5,6], magld more accurate or less biased
posteriors. Niculescu-Mizil and Caruana [1] shovileat using reliability diagrams, these
methods may be effective in improving model caliiora for boosted trees, random

forests, and SVMs, while not reducing or increasialijpration error for neural networks.

In this work, we propose a point-wise local binnmgthod, PL1, for performing model

calibration and measuring reliability. PL1 hasiitive and practical improvements over
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the current state-of-the-art methods for learningdeh calibration and the traditional
approach of measuring reliability diagrams. We keicgdly validate PL1 with

experiments on eleven classification problems.p&ficular note is that PL1 is shown to
improve neural network calibration in almost alkes, which was shown to be unlikely

with the aforementioned calibration approaches.

2 Calibration Methods

In this section we outline three current calibnationethods for mapping model
predictions to posterior probabilities, namely: ng, Platt scaling and isotonic

regression, and discuss some of their practicaasp

2.1 Methods of Model Calibration

Binning [7] is a non-parametric method that can be usedntapping when the shape of
the mapping function is unknown. In binning, tiagnpatterns are sorted by model score
into n bins of equal size. Then, given a test patkeihis assigned a bin according to its
model output score, which is subsequently corretitetthe measured probability that
belongs to class, which is the fraction of training examples in thia that belongs tc
(see Figure 2). The number of bins is problemrandel dependent, and must be chosen

by cross-validation.
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Reliability Diagram
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Figure 2. Calibration by binning.

Platt noticed a sigmoid-shaped distortion in comparingMSoutputs to predicted
probabilities. His method attempts to correct ttistortion by passing model outputs
through a sigmoid [4]. The sigmoid's parameters @ptimized using a maximum
likelihood estimation from a fitting training setele Figure 3). Fitting model outputs to a
sigmoid has been shown to work well for some methbdt not for others, such as naive

Bayes [1,6].
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Figure 3. Sigmoid calibration curve generated by Platt’'s radth

A more general method for calibrating predictiorasdx onisotonic regressionwas
introduced by Zadrozny and Elkan in [5,6]. Thisthoel is a non-parametric form of
regression that can be considered an intermedpgsoach between binning and sigmoid
fitting, where the only restriction is requiringethcalibration curve to be isotonic
(monotonically increasing). A straightforward mathfor generating such a curve is the
pair-adjacent violators (PAV) algorithm [8], whifinds a stepwise constant solution (see

Figure 4).
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Calibration Plot
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Figure 4. Isotonic regression curve generated using the BI§grithm.

2.2 Practical considerations when calibrating

In order to avoid introducing unwanted bias, ijénerally desirable that the data used for
calibration be separate from the data used to tr@mmodel. In practice, this holdout set
may be the same as the holdout set used to perfardel parameter selection. In [1],
Niculescu-Mizil and Caruana showed that Platt scatjienerally performed better than

isotonic regression using PAV when only a small anmt@f calibration data is available,
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while isotonic regression usually outperformed tPktaling with large amounts of

calibration data.

Of these three methods, binning's approach of ecaplyr predicting a probability for
each bin and correcting model outputs to refleat frobability most directly matches
the method of producing reliability diagrams andlaating model calibration. However,
binning has several undesirable artifacts. Onkasecessity of choosing the number of
bins by cross-validation. With small and unbalahdata sets, cross-validation is likely
to indicate a suboptimal number of bins. Also, rewehen cross-validation yields a
globally-optimal number of bins, this representatman underestimate or overestimate
the optimal bin width for local regions of the carvFurthermore, the size (domain) of
bins is fixed and the boundaries are chosen aritytraBinning gives the patterns of each
bin a uniform posterior estimate and sharp jumpgrobability between bins, which are
probably incorrect. One conceivable way to migg#his issue is by interpolating

between bin centers to arrive at a more reliabddability [9].

In [1], empirical tests performed by Niculescu-Miand Caruana showed both Platt's
method and isotonic regression to be unsuitablenéural network calibration. They
explain that neural networks already produce walibcated probabilities when
measured with conventional reliability diagramsndetheir reliability cannot be further
improved. However, in Section 4, we show that akmetwork calibration may be

improved by PL1.
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3 PL1 algorithm

In this section we present PL1, a point-wise Idigahing method for measuring posterior
probability, and describe how it may be used fordetocalibration and measuring

reliability.

3.1 Algorithm

Without loss of generality, here we assume a tvas<clproblem, with patterns labeled
either positive or negative. PL1 takes a setahing patternsJ, of sizeN, sorted on the
learning model’s outputy, and measures a posterior probability for eactepat For a
given patternjLT, with outputo;, a local window W, of then LIT closest points with

respect tm is considered to empirically estimate the posterfp, at model outpug; by

tallying how many patterns in this window are of hositive class. Together, the set of

points @i, p) form the plot used for recalibrating model outpanh test patterns.

To calibrate a test pattern with outpoit the two bounding pointd, and R, on the
calibration plot with respect to are considered, and thefrvalues interpolated to arrive
at a recalibrated output value,, as follows:

L. . . .0-0
O:pL+(pR_pL) -

1)

Ogr =0,
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For speed, in (1) we use linear interpolation, ¢uhic- or other forms of interpolation
may be used by considering additional boundingtgoiseudo-code for PL1 is listed in

Table 1.

Table 1. PL1 algorithm for estimating posterior probabiktigom uncalibrated model
predictions.
Sort training patterng,, according to the learning model’s outpmytpn each pattern.
For each pattern[JT, with outputo;:
W = the set oh points closest to;owhere

n=/#patternsn thepositiveclass.

Estimate posteriop = fraction of patterns belonging to the positivassl in
W.

Add point ©;, p) to the calibration plot.

Given a test pattern with outpaitlet the recalibrated model outpoit= the
interpolated value of points bounding on the calibration plot.

For example, if the learning model outputs a vaii®.7 on a test pattern, and the points
bounding this value on the calibration plot are6%0.0.5) and (0.75, 0.7), then the

recalibrated model output would be 0.5 + (0.7 3 6.®.7 — 0.65) / (0.75 — 0.65) = 0.6.
Although the calibration methods discussed in sact2 are designed for binary
classification, multi-class problems may be con&deby considering them as multiple

binary problems, calibrating the binary models, ssmbmbining the predictions [6].

This technique is likewise applicable to PL1, dkfes:
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For each class labei
1. Generate a calibration pld®, as outlined in Table 1, sorting on the learning
model’s output foc

2. UseP. to calibrate the model output foion test patterns.

That is, one calibration plot per class is generafter training and stored for use during
the test phase. For multi-output models like nleneaworks, this procedure is simple

and straightforward.

If too few training patterns are present within elem class for probability
measurements to be reliable (e.g. 30), then PLtaialssfrom calibrating model outputs

for that class.

3.2 Implementation details

After sorting the patterns by output value, a srigiear scan through the data is all that
is required to first determine the local window fibke first point and then slide that
window along the set of ordered points, re-centgitiron each subsequent point. Hence,

the time required to generate the calibration piosorted data is ©.

We set window size equal to the square root of the number of traipagerns in the
positive class to provide a balance between statiseliability and precision. Assuming
the training set is representative, as the numbgatberns in the training set increases, so

can the number of patterns included in each bihawit losing representational accuracy.
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There may be several points which are given theesaatue foro by the learning model.

In this case, all patterns given an identical oufgme considered, allowing more than
J#patterns in some local windows. That is, all patternattare tied for the closest

patterns are included in the local window. Addmgre patterns of the same distance

increases statistical reliability of the empirigaisterior measurg. while not degrading

precision.

Once the calibration plot is constructed, it wiintain N (x,y) pairs, whereN is the
number of training points considered. If this n@mis unwieldy during deployment, it
may be reduced by utilizing any number of binningcarve fitting approximation

techniques. A discussion of these methods isaritbie scope of this paper.

3.3 Comparison to existing methods

PL1 provides advantages over each of the abovdrattin methods. The main
advantage is that, in contrast to the above methBd$ makes no assumptions about
how the learning model treats the training datehe Tamifications of this take many

forms, described below.

Unlike binning, PL1 does not have an arbitrary ifiarting of examples into fixed-width
bins or need to determine the number of bins bgsck@lidation. A globally-optimal bin
width or number of bins is not assumed. Instehd,kin width is fit to each training
point based on local context. PL1 does not assalhpmatterns in each bin have a single

common posterior, so bins are allowed to partiallgriap.
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PL1 improves on Platt's method because it doeassime a specific shape distortion of
pattern output values (e.g., sigmoidal), but idblfit any shape, given enough data to
match that shape's complexity. However, PL1 da¢sequire a large amount of data in
order to take effective measurements for posteggtimation since point bins may

overlap.

Calibration

0.9

0.8

0.7

0.6
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Figure 5. Sample calibration plot generated by PL1.

Figure 5 shows a representative calibration ploiegated by PL1. Observe that curves

generated by PL1 are not isotonic. Constrainiregdalibration curve to be isotonic is
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valid when the assumption that the learning modeks examples correctly is met.
However, this is not true for every model. Fortamge, consider a linear model (e.g., a

perceptron) attempting to learn a problem thabidinearly separable.

(A) (B) ()

Figure 6. A simple non-linearly separable problem (A), alwadtion curve for a
perceptron attempting to learn this problem coms$ti via isotonic regression (B), and
an optimal calibration plot (C).

For the hypothetical data set in Figure 6, the ogar nature of the problem precludes
the use of an isotonic curve to perform optimalbecation for a linear learning model.
Here, the problem is too complex for a perceptmietirn (Figure 6a) and an isotonic
curve does not allow for optimal model calibratighgure 6b). If the restriction of a
non-decreasing probability output ranking is rethxten an optimal calibration plot may
be attained (Figure 6c¢). Therefore, we consideantimprovement to remove the
assumption that examples are ranked correctly éyearning model, without hindering

the ability to generate an isotonic curve when asisumption is met.

Observe that isotonic calibration curves do noingeathe ranking of patterns, but non-

isotonic calibration can alter pattern ranking. 1Hias greater power to alter a model's
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outputs, and hence more potential to alter clasdiin accuracy. In the case presented
in Figure 6, this property could improve the maglelassification accuracy toward the
optimal value. For other problems, it is also flussthe model's overall classification
accuracy could be reduced. However, consideriagttite purpose for calibrating model
outputs is to perform in problem domains where goabability values are important as
well as classification accuracy, it is acceptabléradeoff some classification accuracy

for improved probability outputs.

As an aside, calibration algorithms that are bettde to fit a model's actual performance
on a data set not only improve model reliabilityt lzould also be used to study the
general suitability of various families and typddearning models to the task of learning
various problem domains. For example, a postaniove such as the one shown in
Figure 6¢c might show that the learning model isarpdwered to correctly learn the
problem at hand and a more powerful model ougbetased. Such a study, however, is

outside the scope of this work.

If obtaining an isotonic function is desired, thAWPalgorithm may be applied to the

calibration plots generated by PL1 as a post-psicgstep.

3.4 PL1 applied to plotting reliability diagrams
The problems with using binning for generating lm@tion curves discussed in section
3.3 also exist with the traditional method for filng reliability diagrams (i.e. using a set

number of exclusive bins of equal width acrossdhut range can lead to inaccurate
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results). In [1], Niculescu-Mizil and Caruana fauthat neural networks appear fairly
well-calibrated on reliability diagrams (see Fig@e However, PL1 shows models that

are less well-calibrated in comparison.

The model shown in Figure 2 above exhibits a mepued error (MSE) of 0.0030
using the conventional 10-bin method, approximai@ls% mean error in posterior
estimation. In contrast, using PL1 to plot relidpicalculates a MSE of 0.0103,
approximately a 10% mean error in posterior esionaf{see Figure 7). The 10-bin

method overestimates the model’s reliability duehtdissues discussed in section 2.2.

Figure 7 shows reliability plots generated using method before and after point-wise
calibration for the learning model used in FigureNSE before and after calibration was
0.0103 (10% mean error) and 0.0059 (7.5% mean)erespectively. However, on other
data sets or with other learning models, conveatioreliability diagrams may

underestimate the model’s calibration compared.th. P
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Figure 7. Reliability diagram constructed using PL1 to meagefiability before and
after calibration by PL1.

4 Experiments

Eleven well-known benchmark classification problemsre selected from the UC

Irvine Machine Learning Repository (UCI MLR) [10]The problems were selected
so as to have a variety of characteristics (nundigpatterns, number and type of
features, number of class labels, and complexitydrider to analyze the robustness

of our calibration method (see Table 2).
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Table 2.Properties of benchmark data sets.

Data set Patterns| Feature§ Classeps
ann 7200 21 3
balance 625 4 3
bcw 699 9 2
derm 358 34 6
ecoli 336 7 8
ionosphere 351 33 2
iris 150 4 3
musk?2 6598 166 2
pima 768 8 2
sonar 208 60 2
wine 178 13 3

Experiments were performed on four learning alpong: artificial neural networks

(ANN), naive Bayes, a bagged ensemble of 100 IRBum trees (100-BDT), andNN

with k=/#patterns.

Feature values (both nominal and continuous) werenalized between zero and one.
Pattern classification was determined Wwinner-take-all(the class of the output node
with the highest value is chosen). Testing wasopmed using 10-fold stratified cross-

validation. Each experiment was rerun ten timekthe results averaged.

The ANN models were standard feed-forward multelayperceptron networks
optimizing cross-entropy, both with and without glei decay regularization. The multi-
layer perceptrons had a single, fully connectedémndayer and were trained through on-
line backpropagation. The optimal number of hiddedes was empirically determined
for each task with a validation set, searchingiayzes within the range from one to fifty

hidden nodes. Networks had one output node pessc{amcluding on two-class
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problems). In all experiments, network weights evarmitialized to uniform random
values within the range [-0.01,0.01] [11]. Traigpipatterns were presented to the
network in a random order each epoch. Learnirggaati momentum were optimized for
each application by cross-validation. Weight deeales ofx = 0, 0.00001, 0.00003,
0.0001, 0.0003, and 0.001 were considered and pienal value used for each
application [12]. Training continued until the itimg set was successfully learned or
training set classification error ceased to de@das a substantial number of epochs.
The model selected for test evaluation was the ortvon the epoch with the best

holdout set accuracy, where the holdout set catsist 20% of the original training data.

Results are displayed in Tables 3-6. Each rowlalspthe averaged results on one data
set. The left half of each table (columns 2-4)pldigs classification accuracy before
calibration and after calibration with PL1 and @ut regression with PAV. The right
half (columns 5-7) displays MSE before and aftet Rhd PAV calibration. We chose to
display MSE because it is a proper scoring ruletfidl is minimized as calibration is

improved.
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Table 3.ANN performance on benchmark data sets.

Dataset ClassificationAccuracy | Accuracy | MSE MSE MSE

Accuracy after PL1 | after PAV after after

PL1 PAV
Ann 0.9909 0.9909 0.9909| 0.0106] 0.0050; 0.0050
Balance 0.9344 0.9320 0.9296/ 0.0488| 0.0364| 0.0366
Bcw 0.9717 0.9718 0.9715| 0.0216] 0.0224| 0.0225
Derm 0.9736 0.9745 0.9761| 0.0144| 0.0081| 0.0072
Ecoli 0.8297 0.8218 0.8187| 0.0805| 0.0340| 0.0598
lonosphere 0.9200  0.9280 0.9277| 0.0624| 0.0593| 0.0598
Iris 0.9580 0.9533 0.9520| 0.0321| 0.0192] 0.0203
Musk?2 0.9869 0.9864 0.9869| 0.0162| 0.0123] 0.0123
Pima 0.7661 0.7645 0.7608| 0.1565| 0.1578| 0.1579
Sonar 0.8426 0.8429 0.8400, 0.1252| 0.1241| 0.1248
Wine 0.9822 0.9789 0.9789| 0.0195| 0.0134| 0.0128
Average 0.9233 0.9223 0.9212| 0.0534| 0.0447| 0.0472

Though not the primary goal of model calibrationjsi of interest to note model test
accuracy before and after calibration (Table 3uwis 2-4). Classification accuracy is

approximately the same before and after calibratidfith PAV, accuracy decreases by

0.2%, and with PL1, average accuracy decreaseslbf.0

Columns 5-7 show MSE without calibration, after Pafhd after PAV, respectively. For

ANNSs (Table 3), improvement is shown in almostabkes, except fdicw and pima

MSE is reduced 15%, from 0.0589 to 0.0502 with Padd reduced 10.5% to 0.0526

with PAV.
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Table 4.100-BDT performance on benchmark data sets.

Dataset ClassificationAccuracy | Accuracy | MSE MSE MSE

Accuracy after PL1 | after PAV after after

PL1 PAV
Ann 0.9990 0.9992 0.9992| 0.0005| 0.0005| 0.0005
Balance 0.9760 0.9760 0.9760, 0.0189| 0.0147| 0.0147
Bcw 0.9971 0.9941 0.9941| 0.0057| 0.0033] 0.0041
Derm 0.9888 0.9888 0.9888| 0.0037| 0.0033| 0.0033
Ecoli 0.9881 0.9851 0.9851| 0.0067| 0.0034| 0.0032
lonosphere 0.9972  0.9972 0.9972| 0.0109| 0.0030/ 0.0030
Iris 1.0000 1.0000 1.0000/ 0.0038| 0.0007, 0.0004
Musk?2 0.9985 0.9986 0.9986| 0.0033| 0.0010; 0.0010
Pima 0.9714 0.9714 0.9701| 0.0390] 0.0248| 0.0258
Sonar 0.9712 0.9712 0.9712| 0.0293| 0.0159| 0.0159
Wine 1.0000 1.0000 1.0000{ 0.0045/ 0.0006| 0.0006
Average 0.9897 0.9892 0.9891| 0.0115] 0.0065| 0.0066

Accuracy is practically unchanged when calibrating decision tree ensemble. MSE is
reduced by more than 40% after calibration. PLd BAV exhibit roughly the same

performance on average.

Table 5.Naive Bayes performance on benchmark data sets.

Dataset ClassificationAccuracy | Accuracy | MSE MSE MSE
Accuracy after PL1 | after PAV after after
PL1 PAV
Ann 0.9549 0.9608 0.9613 0.0242 0.0217 0.0213
Balance 0.9152 0.9136 0.9168 0.0797 0.0530 0.0491
Bcw 0.9678 0.9649 0.9649 0.0315 0.0330 0.0323
Derm 0.9022 0.9078 0.9106 0.0183 0.0176 0.0175
Ecoli 0.6577 0.7530 0.8006 0.0762 0.0480 0.0363
lonosphere| 0.8519 0.8946 0.8917 0.1399 0.0917 0.0867
Iris 0.9533 0.9600 0.9533 0.0242  0.0266 0.0279
Musk?2 0.8459 0.8459 0.8459 0.2500 0.2500 0.2500
Pima 0.7513 0.7487 0.7500 0.1786 0.1750 0.1691
Sonar 0.6731 0.6923 0.7260 0.2943 0.2041  0.1942
Wine 0.9719 0.9775 0.9719 0.0140 0.0134 0.0164
Average | 0.8587 0.8745 0.8812 0.1028 | 0.0849 | 0.0819
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Table 6.k-NN performance on benchmark data sets.

Dataset ClassificationAccuracy | Accuracy | MSE MSE MSE
Accuracy after PL1 | after PAV after after
PL1 PAV
Ann 0.9269 0.9360 0.9363 0.0408 0.0373 0.0371
Balance 0.8416 0.8336 0.8352 0.1108 0.0830 0.0843
Bcw 0.9414 0.9649 0.9678 0.0393 0.0289 0.0281
Derm 0.6620 0.6927 0.6816 0.0892 0.07583 0.0764
Ecoli 0.8482 0.8452 0.8482 0.0298 0.0288 0.0280
lonosphere| 0.8348 0.8832 0.8832 0.1379 0.0907 0.0902
Iris 0.9800 0.9800 0.9800 0.0177 0.016f 0.0178
Musk?2 0.9323 0.9315 0.9303 0.0517 0.0460 0.04%9
Pima 0.7396 0.7331 0.7383 0.1741 0.1774 0.1745
Sonar 0.6683 0.6635 0.6346 0.2019 0.2044  0.2005
Wine 0.6966 0.6966 0.6966 0.1170 0.1213 0.1180
Average | 0.8247 0.8328 0.8302 0.0918 | 0.0827 | 0.0819

PL1 and PAV calibration significantly improve cldgstion accuracy and MSE for
naive Bayes and k-NN. PAV shows better classiboaimprovement for naive Bayes
than PL1, and PL1 performs better than PAV on k-NAL1 and PAV improve MSE on

naive Bayes and k-NN, with PAV performing slighttigtter on average.

5 Conclusions

In this work PL1, a new algorithm for performing ginical estimates of model
posteriors, was presented. This techniqgue maysbkd un constructing model calibration
curves for outputting more accurate posterior pbdltis. PL1 outperforms isotonic
regression using the pairwise-adjacent violatogerithm (PAV) when calibrating neural
networks. Where prior work [1] has shown PAV [8]5unable to improve neural

network reliability, applying PAV on these datassdbes show an improvement in error.
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PL1 generally outperforms PAV and exhibits a sigaifit reduction in neural network
calibration error on nearly all data sets testBdl.l was shown to perform well for data
sets and learning models of varying size and caoxtglereducing MSE for neural
network models by 15% on average. PL1 performspewably to PAV when calibrating
a bagged decision tree ensemble. On naive Bayas performs better than PL1, and

with k-NN, PL1 and PAV perform comparably.

We plan to apply PL1 to other learning algorithmegch as classification-based error
functions for neural networks [13], which have be@own to yield higher classification
accuracy than cross-entropy optimization, but do odput accurate posteriors. It is
expected that post-training calibration with PL1lwhprove these networks’ posterior
probability prediction while allowing them to retatheir higher level of classification

accuracy.
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Chapter 8

Calibrating Classification-based Networks to Improwe Posteriors
Michael Rimer and Tony Martinez

Department of Computer Science, Brigham Young Usitg Provo, UT 84602
Abstract.  Classification-based (CB) error functions can inweroneural network
classification accuracy over conventional objectiuactions like cross-entropy (CE).
However, resultant model outputs are not usablgoaterior probabilities, as opposed to
CE trained networks. This work applies a new paiise local binning method, PL1, for
calibrating CB model outputs to provide more actrgrobability predictions.
Empirical tests show that calibrated CB networks yiald more accurate posteriors than
uncalibrated CE networks while retaining a sigaifity higher degree of accuracy.
When calibrated, CB and CE models yield equallyueate posterior probabilities, while

CB models remain more accurate.

1 Introduction

In many machine learning applications, it is impattfor the learning model to yield
accurate posteriors. This is applicable to probirmains with unknown or asymmetric
cost functions or in multi-tier learning systemdsyese it is desired that the outputs of one
layer of the system be used as probabilities ipihglthe next layer make a decision. In
these situations, achieving high classificationuaacy may not be sufficient. Certain
learning methods output values that may be usedraibt as posteriors, such as

softmaxed cross-entropy (CE) neural networks anglgéad decision tree ensembles.
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Other learning models do not output posteriorshsag decision trees, or may output

biased posteriors (e.g. naive Bayes and SVMs) [1].

Classification-based (CB) error functions [2,3,4¢ éearning algorithms that implement
objective functions designed to maximize classifttaaccuracy. Though more accurate
with respect to classification accuracy than CBEvoeéts, CB networks are not designed

to yield output values usable as accurate postprairabilities.

Reliability diagrams [5] are commonly used in vikziag model calibration for real
problem domains where true conditional probabditeee not known. The accepted
method for generating these diagrams involves elizing the prediction space into a set
number of exclusive bins and plotting the mean ipted value against the true (i.e.,
empirically measured) fraction of positive casEsr a well-calibrated model, predictions
will fall along the diagonal line, representing adel whose confidence matches the
actual posterior probability for a given data sate( Figure 1). Calibration mean-squared
error (CMSE) is calculated by averaging the squalisthnce of the model's prediction

from the measured posterior across all bins.
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Figure 1. Reliability diagram using the conventional 10-biethod.

In certain cases, introducing a post-processing stanodel output calibration, such as
Platt Scaling [6] or Isotonic Regression [7,8] magld more accurate or less biased
posteriors. Niculescu-Mizil and Caruana [1] showleat using reliability diagrams, these
methods may be effective in improving model caliiora for boosted trees, random
forests, and SVMs, while not reducing or increasialipration error for neural networks.
In [9], a new method for model calibration and abllity diagram generation, PL1, was

proposed, which was shown to improve neural netwalibration.
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In this work, we use PL1 to calibrate CB trainednaé networks with the aim of making
their outputs reflect posterior probabilities. Weapirically validate this method with
experiments on eleven classification problems drmvsthat PL1 is able to significantly
reduce calibration error of CB networks, makingirthese feasible in problem domains
where outputting accurate posterior probabilitesmportant. Calibrated CB networks
are shown to have calibration MSE equal to CE éginetworks, while also retaining

their higher degree of accuracy.

2 Calibration Methods

In this section we provide a brief overview of threalibration methods for mapping
model predictions to posterior probabilities: bmgiPlatt scaling and isotonic regression,

and discuss their applicability to calibrating reduretworks.

2.1 Methods

Binning [10] is a non-parametric method that can be usednbpping when the shape of
the mapping function is unknown. In binning, tiagnpatterns are sorted by model score
into n bins of equal size. Then, given a test patkeiihis assigned a bin according to its
model output score, which is subsequently corretidetthe measured probability that
belongs to class, which is the fraction of training examples in thia that belongs tc
(see Figure 2). The number of bins is problemrandel dependent, and must be chosen

by cross-validation.
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Figure 2. Calibration by binning.

Platt noticed a sigmoid-shaped distortion in comparingMSoutputs to predicted
probabilities. His method attempts to correct ttistortion by passing model outputs
through a sigmoid [5]. The sigmoid's parameters @ptimized using a maximum
likelihood estimation from a fitting training setele Figure 3). Fitting model outputs to a
sigmoid has been shown to work well for some methbdt not for others, such as naive

Bayes [1,7].
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Figure 3. Sigmoid calibration curve generated by Platt’'shodt

A more general method for calibrating predictiorasdx onisotonic regressionwas

introduced by Zadrozny and Elkan in [6,7]. Thisthoel is a non-parametric form of
regression that can be considered an intermedpgsoach between binning and sigmoid
fitting, where the only restriction is requiringethcalibration curve to be isotonic
(monotonically increasing). A straightforward mathfor generating such a curve is the
pair-adjacent violators (PAV) algorithm [11], whidimds a stepwise constant solution

(see Figure 4).
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Figure 4. Isotonic regression curve generated using the Pigdfighm.

2.2 Applicability of above methods to neural network calibration

Binning has several undesirable artifacts. Orihasmnecessity of choosing the number of
bins by cross-validation. With small and unbalahdata sets, cross-validation is likely

to indicate a suboptimal number of bins. Also, rewehen cross-validation yields a

globally-optimal number of bins, this representatman underestimate or overestimate
the optimal bin width for local regions of the carvFurthermore, the size (domain) of

bins is fixed and the boundaries are chosen aritytraBinning gives the patterns of each
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bin a uniform posterior estimate, which is probadtyincorrect assumption. Similarly,

from an instance-based perspective, for test petiging close to bin boundaries, it does
not follow that a point on the opposite end of biie should be considered relevant, while
patterns from an adjacent bin that are physicdtigaer are discounted. One conceivable
way to mitigate this issue is by interpolating begéw bin centers to arrive at a more

reliable probability [12].

In order to avoid introducing unwanted bias, igenerally desired for the data used for
calibration to be separate from the data usedain the model. In practice, this holdout
set may be the same as the holdout set used trperiodel parameter selection. In [1],
Niculescu-Mizil and Caruana showed that Platt scatienerally performed better than
isotonic regression using PAV when only a small am@f calibration data is available,
while isotonic regression usually outperformed tPktaling with large amounts of

calibration data.

In [1], empirical tests performed by Niculescu-Miand Caruana showed both Platt's
method and isotonic regression to be unsuitablenéural network calibration. They
explain that neural networks already produce walibcated probabilities when
measured with conventional reliability diagramsndetheir reliability cannot be further
improved. However, in [9] it was shown that usiilgl for reliability measurement and
calibration, it is possible to further improve nalunetwork posteriors. Therefore, we

choose this method for calibrating CB trained neksan this work.
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3 Point-wise Local Binning Calibration Method

In this section we briefly present the PL1 calilmmatmethod introduced in [9].

Without loss of generality, here we assume a tvas<clproblem, with patterns labeled
either positive or negative. PL1 takes a setahing patternsJ, of sizeN, sorted on the
learning model’s outputy, and measures a posterior probability for eactepat For a
given patternjJT, with outputo;, a local window W, of then UT closest points with

respect tm is considered to empirically estimate the posterf, at model outpub; by

tallying how many patterns in this window are o hositive class. Together, the set of

points @i, p) form the plot used for recalibrating model outpon test patterns.

To calibrate a test pattern with outpaoit the two bounding pointd, and R, on the
calibration plot with respect to are considered, and thefrvalues interpolated to arrive
at a recalibrated output value,, as follows:

L. . . .0-0
O:pL+(pR_pL) -

1)

Og =0,
For speed, in (1) we use linear interpolation, ¢uwhic- or other forms of interpolation

may be used by considering additional boundingtgoiPseudo-code for PL1 is listed in

Table 1.
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Table 1. PL1 algorithm for estimating posterior probabiktiom uncalibrated model
predictions.
Sort training patterng,, according to the learning model’s outpuytpn each
pattern.
For each pattern[JT, with outputo;:
W = the set oh points closest to;owhere
n=/#patternsn thepositiveclass.
Estimate posteriop = fraction of patterns belonging to the positivass
in W,
Add point @i, p) to the calibration plot.
Given a test pattern with outpaitlet the recalibrated model outpoit= the
interpolatedo value of points bounding on the calibration plot.

For example, if the learning model outputs a vaifi6.7 on a test pattern, and the points
bounding this value on the calibration plot are6%).0.5) and (0.75, 0.7), then the

recalibrated model output would be 0.5 + (0.7 3} 0.®.7 — 0.65) / (0.75 — 0.65) = 0.6.

Although the calibration methods discussed in eact?2 are designed for binary
classification, multi-class problems may be con&deby considering them as multiple

binary problems, calibrating the binary models, ssmbmbining the predictions [7].

The main advantage of this approach over the mstlootlined in section 2 is that it
makes no assumptions about how the model treatsaineng data. Ramifications of this

are described in [9].

4 Experiments

Eleven well-known benchmark classification problenese selected from the UC Irvine

Machine Learning Repository (UCI MLR) [13]. Theoptems were selected so as to
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have a variety of characteristics (number of pagemumber and type of features,
number of class labels, and complexity) in ordeamtalyze the robustness of applying

PL1 to CB trained networks method (see Table 2).

Table 2. Properties of benchmark data sets.

Data set Patterns| Feature§ Classes
ann 7200 21 3
balance 625 4 3
bcw 699 9 2
derm 358 34 6
ecoli 336 7 8
ionosphere 351 33 2
iris 150 4 3
musk?2 6598 166 2
pima 768 8 2
sonar 208 60 2
wine 178 13 3

Experiments were performed comparing optimized Gtedfforward multi-layer
perceptron networks, both with and without weigbtaly regularization, to existing CB
algorithms, CB1 [2], CB2 [3], and CB3 [4]. All medrks had a single, fully connected
hidden layer and were trained through on-line bempg@gation. The optimal number of
hidden nodes was empirically determined for eask with a validation set, searching
layer sizes within the range from one to fifty heddnodes. Networks had one output
node per class (including on two-class problems).all experiments, network weights
were initialized to uniform random values withinetlhange [-0.01,0.01] [14]. The
learning rate and momentum were optimized for @¢ask by cross-validation. For CE

networks, weight decay values bf= 0, 0.00001, 0.00003, 0.0001, 0.0003, and 0.001

were considered and the optimal value used for epphcation [15].
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Feature values (both nominal and continuous) werenalized between zero and one.
Training patterns were presented to the network nandom order each epoch. Each

experiment was repeated ten times with a differamiom seed and the results averaged.

Pattern classification was determined Wwinner-take-all(the class of the output node
with the highest value is chosen). Training camish until the training set was
successfully learned or training set classificagomor ceased to decrease for a substantial
number of epochs. The model selected for tesuatiah was the network on the epoch
with the best holdout set accuracy, where the haldet consisted of 20% of the original

training data.

Figure 2 displays 95% confidence intervals for #nea under the ROC curve (AUC-
ROC) for each learning method, averaged acrogxp#riments. The ROC curve is used
to measure a model's performance when using diffetlereshold values as the cutoff
point for labeling patterns as positive. AUC-RO@asures the model’s robustness to

using cutoff values across the entire range ofiptessutoff points.
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AUC-ROC
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Figure 2. Area under the ROC curve, averaged over all expsarim

Each method is significantly different for the athevith greater than 95% confidence
(using a reverse bar-overlaps-bar test [16]). @BBorms the best, having the highest
AUC-ROC, followed by CB2 and CB1. These rangesraarly identical before and

after calibration.

Figures 3 and 4 show 95% confidence intervals feasared calibration mean-squared
error (CMSE), or the average squared differencevdsst network outputs and measured

posteriors, before and after the calibration of pegtern outputs.
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Pre-calibration MSE
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Figure 3. Pre-calibration MSE, averaged over all experiments.

Post-calibration MSE
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Figure 4. Post-calibration MSE, averaged over all experiments
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Before calibration, CB1 has a high CMSE of 0.076jo equates to a more than 26%
inaccuracy in the posterior probability estimateamerage. CE has the best CMSE at
about 0.01, which is a 10% inaccuracy in postegstimation. After calibration, the
CMSE of all learning methods is significantly impea. CB1 has a post-calibration
CMSE roughly equal to pre-calibration CMSE for C&2d CB3. Calibrated CB3 has
significantly lower CMSE than uncalibrated CE netkg Calibrated CB3 and CE
networks have a nearly identical CMSE of about 85)0vhich translates into a 7.5%
inaccuracy in posterior estimation, on average.nséquently, inaccuracy in posterior
estimation for CB1 and CB3 has been decreased g than half, and this inaccuracy is

reduced by about 25% for CB2 and CE.

5 Conclusions

In this work, we applied the PL1 algorithm [9] tinl £B trained networks in outputting
more accurate posterior probabilities. Empiriedts on eleven classification problems
showed that using this approach to calibrate CBvosds significantly reduces their
calibration error. After calibration, CB1 becomasout as well-calibrated as CB2 and
CB3 without calibration. Calibrated CB3 networksmut probability estimates that are
on par with calibrated CE networks. CB3 modelsehsuperior classification accuracy
over CE networks before and after calibration, Wwrsaggests the use of calibrated CB3
networks for problem domains where high accuraay arcurate probability estimation

is desired.
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Chapter 9

Speed Training: Improving the Rate of Backpropagaton
Learning through Stochastic Sample Presentation

Michael E. Rimer, Timothy L. Andersen and Tony Rarfihez
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Provo, UT 84602, USA
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Abstract. Artificial neural networks provide an effective emigal predictive model for
pattern classification. However, using complex raewmetworks to learn very large
training sets is often problematic, imposing praub time constraints on the training
process. We present four practical methods fomdtally decreasing training time
through dynamic stochastic sample presentatiorecanique we call speed training.
These methods are shown to be robust to retairengrglization accuracy over a diverse

collection of real world data sets. In particulle SET technique achieves a training

speedup of 4278% on a large OCR database withtectdble loss in generalization.

1 Introduction

Artificial neural networks have received substdrgitbention as robust learning models
for tasks including classification [5]. Much resgahas gone into improving their ability
to generalize beyond the training data. Many f&cpday a role in their ability to learn,

including network topology, learning algorithm, atiee nature of the problem at hand.
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In particular, the measure to which the trainingrepresents the underlying distribution
influences ultimate classification accuracy. Oienly the training data is often
detrimental to generalization. In theory, amassingnfinite training set would provide
an exact measure of test accuracy (complete repedgm of the data distribution) and
discourage overfitting. Hence, it is desirableirioorporate as large a training set as
possible into the learning phase. However, trginon very large data sets is
problematic, as training time tends to increaseentban linearly with the size of the
training set [3]. The time required to convergelange data sets can be prohibitive. We
provide four novel learning approaches that hawsvehto decrease training time by over
an order of magnitude on very large data sets. aiNgpt the SET method achieves a
training speedup of up to 4278% on the data test@d no detectable loss in

generalization.

We give an overview of related work in section 2l gmmesent four novel methods for
speed training in section 3. Experiments are desdrin section 4. Results and analysis

are given in section 5, followed by further worksiection 6 and conclusion in section 7.

2 Related work

There have been many algorithms used to speed augrdining of backpropagation
neural networks, most of which are gradient des€eptimizing” algorithms. Two
noteworthy approaches are QuickProp [2] and RP4dp QuickProp introduces a new

error function, weight decay, and an alternativemmapntum equation. RProp uses an
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exponentially adaptive step size for each parametdre network [7]. These techniques
allow quicker convergence. However, little reshanas involved how the nature and
size of the training set affects the training spaed resultant generalization. Zhang [9]
creates a training set by selecting only criticehraples and then expands this set if

necessary for proper convergence.

A simpler method of improving generalization througducing overfitting is to provide
a maximum error tolerance threshalga, Which is the smallest absolute output error to
be back propagated [6]. In other words, for ity target valuet;, and network
output,o;, no weight update occurs if the absolute ertor p; | <dmax This threshold is
arbitrarily chosen to represent a point at whichsample has been sufficiently
approximated. With an error threshold, the netwergermitted to converge with much

smaller weights, translating to a reduction in @ittang.

When class data is unbalanced, techniques suchibasaspling and re-sampling the
training data can provide a way to reduce trainimg and improve generalization on the
less represented classes [3]. Along with thesenigaes, Owens trains a committee of
networks, each network learning from a distinctigbeed) subset of the training data.
However, while this can improve training time arghgralization, it results in a much
more complex solution involving several networkstéad of one. This technique’s
training time is reduced at the expense of tegting. In problem domains where a large
amount of high-dimensional data is being classjfisgch solutions introduce a new

problem by slowing down classification.

203

www.manaraa.com



Chapter 9. Speed Training: Improving the Rate of Backpropagation Learning
through Stochastic Sample Presentation

3 New approaches

Our proposed methods differ from Zhang’'s and Ow@m$ivo main respects. First, we
use a stochastic data selection mechanism baselg sal the network’s ability to learn
the given data rather than statistical approach@ssing on feature redundancy. Second,
whereas Zhang only adds more examples with time does not allow them to be
removed from the training set and Owens selectidiermines the data as a step
preliminary to training, we provide a temporally ndynic stochastic data inclusion
mechanism that presents samples to the networkrdingoto present learning need.
These differences are based on inferred featurelation and data replication (identical
or almost-identical samples) existing in artificexhd real world data sets. Equivalent

generalization is achieved in less time withoutéasing the complexity of the network.

Rather than initially selecting a small subsethef training data to present to the network
during training, the network retains access taath samples during the training process.
Sample presentation is determined exclusively leyathility of the network to learn the
data. These methods result in a large reductiotraiming time through selectively
“pruning” correctly classified samples from theiiiag set to exclude their (redundant)
presentation to the network each epoch. In otherdsy only the samples currently
affecting the learning process are presented. afée to this method of reducing training

time through selective sample presentatiogpesed training
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3.1 Error based presentation (Error Based)

Each sample from the training data is presentetth@éonetwork during the first epoch.
The output error of the net for each sample isndmmh In subsequent epochs, samples
are stochastically presented to the network basethe previous amount of error, where
the error translates to the probability of subsegpeesentation. That is, the probability
of a sampley;, being presented on the following epoch is equatst@bsolute training

error (a value between 0 and 1), or formally,

1)

wheret; is the sample’s target value,is the net output, and () || is a normalization
factor describing the range of the activation fiorct(e.g., 1 for a standard sigmoid

function).

Therefore, samples already learned to a high degfreecuracy are rarely presented to
the network, while samples with a high error arespnted more often. This approach
provides a mechanism to progressively speed upitipias the network converges by
bypassing unneeded examples (those that do Gtilgdate the network parameters) and

focusing on the more difficult parts of the problem

3.2 Stochastic presentation with error threshold (SET)
An error tolerance thresholdl,,, is incorporated so that network weights are only

updated on samples that output an error greater thia threshold (as described in
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Section 2). The probability of presenting a santpléhe network is proportional to how

close the sample is to overstepping the threshietamally,

|ti _Ol
P&)=1< d__

1 otherwise

i |t —01< d,

This crudely equates to the probability the sampés of affecting the network
parameters. Thus, samples with error far belowttiheshold will be seen rarely, while
samples closer to the threshold will be seen dftemaintain their correctness. This
effectively bypasses samples that do not affecpér@®rmance of the network. Note that

this method is more “conservative” than equation gkipping fewer samples on average.

3.3 Skip when correct (-SKIP)
When the network classifies a sample correctlynfepochs, do not present it again fior

epochs:

0 if (lastnepochsorrecy ]
P) = (skippedessthanastnepochys

1 otherwise

wheren is a parameter and “skipped” is whgnis not presented during an epoch; we
define “correct” as error withirdax for the experiments presented below. These
parameters are determined by the problem at hand, can include the network

outputting in a range of values (e.g., above 0.@awording to winner-take-all). The
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intuition behind this method is that when the netwmcorrectly classifies a sample, it
will probably incorrectly classify it again. Comgely, when the network is consistently
correct on a sample, it will probably be correctiag and can therefore be skipped

without adversely affecting the training procesthwiigh probability.

The tendency is that the more data there are, when some samples are skipped, there
will exist neighboring samples (closer to the diecisurface) that are not skipped. This
serves to keep the decision surface “in line” ia tamporary absence of sample points.
Re-including a sample aftarepochs provides a quick check that the samplilibaing
classified correctly, and then if it is still coctat is skipped for another epochs. The
larger the value of, the greater the speed up will be on large datg sdth the greater
risk of samples falling “out of line” during theabsence from several training epochs.
This might result in greater deviation from stamd#maining, but does not necessarily

translate to a loss in generalization accuracy.

3.4 Stochastic presentation based on correctness history (Correct Ratio)
The probability ofnot presenting a sample is the ratio of the numbepoths for which
it is correctly classified to the total number glbehs. We implement the probability of

presentation through the formula

_ #epochgorrect
#epochs

Pk) =1 (2)
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where # epochsincludes the current epoch (so that there is awaychance for
presentation). The more often a sample is claskifiorrectly the less often it is
presented. For our experiments, we wlad consider a sample correctly classified when
skipped. This conservatively avoids skipping sasphore and more often with time

without justification. Other variants are possiahel are discussed in section 8.

3.5 Resource Requirements
For the above methods, additional resource reqeindsnare modest, limited ©(n) in

both space and time over the number of samples.

4 Experiments

To measure the speedup achieved through theseaapeo as well as validate their
integrity we tested them on various problem domdirmsn small toy problems to very

large real world data sets.

4.1 Data sets
1. 4-AND. A small “toy” problem (although it certainly caappear in real data)
consisting of a 4-inpuAND function with 16 samples that completely cover phablem

space.
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2. Breast cancer Wisconsin (bcwA medium-sized real world problem taken from the
UCI Machine Learning Repository [8], consisting mhe input attributes, one binary

output, and 549 patterns, randomly split into 43thing patterns and 110 test patterns.

3. OCR. A very large set of machine printed alphanumehiaracters used for OCR. It
consists of over 495,000 samples, randomly spitt moughly 415,000 training samples
and 80,000 test samples. For training, each samaéenormalized onto an 8x8 grid,
resulting in 64 inputs. We trained a network taetidiguish each character, but for
simplicity only the results for the character “a& {ypical category with about 15,000

samples) are presented here.

4.2 Learning parameters

We used fully connected feed-forward neural netwdrkined through standard on-line
backpropagation (minimizing SSE) for all experingentor learning thd-AND, breast
cancer,andOCR problems the network contained a single hiddeerrlapmprised of 4,

5, and 32 hidden nodes, respectively. Weights wetialized to uniform random values
in the range [-0.3,0.3]. For a given data set,sdm@e initial weight values were used for
all training runs. We used a learning rate of @m®mentum of 0.5, and error threshold
(dmay Of 0.1 in all experiments presented here. Trajnvas stopped when no samples
were classified incorrectly oA-AND, and when a maximum number of epochs was

reached (1000 fdsreast canceand 500 foOCR.
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5 Results and analysis

Tables 1-3 display the results of each data $giochsis the number of epochs until
convergence Sampless the total number of samples presented to th&ank during the
training run. Timeis real training time in second$o SpdUpis the speedup in training
time over the standard method, in percehtain is the final training set accuracy (above
0.5 for positive samples, below 0.5 for negativenglas) in percent.Train MSEis the
mean squared error for the training set at convexgeTestis the test set accuracy in
percent. Test MSHs the mean squared error for the test set. \Bages for each column

are in italics.

The Error Based presentation technique resultshén greatest training speed up in
general, from a 78% increase in speedoogast canceto a 4487% speed up @CR

Of all four methods, this one prunes samples nggtessively. This is at the expense of
a slight decrease in generalization accuracy comapty standard sample presentation.
Speed up otbreast cancers not as great as on other sets because the MBigher on
this data set. Higher average error causes sanplbe presented more often during

Error Based presentation.
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Table 1. Results o-AND.

Method | Epochs | Samples| Time | % SpdUp [ Train | TranMSE | Test| Test MSE
Standard 1499 23984( 0.047 N/A | 100.0f 0.0313

Error Based 559 3126| 0.016( 193.75| 100.0| 0.0945

SET 1495| 12539| 0.032| 46.88| 100.0f 0.0313

3-SKIP 1165 7122| 0.032( 46.88| 100.0f 0.0609| N/A N/A
6-SKIP 1325 8289| 0.032| 46.88( 100.0f 0.0409

9-SKIP 1464 9333| 0.032 46.88| 100.0] 0.0326

CorrectRatio [ 1502| 11092| 0.032 46.88| 100.0| 0.0313

Table 2. Results orbcw.
Method | Epochs | Samples| Time | % SpdUp | Train | TranMSE | Test| Test MSE
Standard 439000( 1.281 N/A | 94.76( 0.0947| 90.91| 0.1293
Error Based 137990| 0.719| 78.16( 97.04( 0.1076| 88.18| 0.1478
SET 201248 0.859| 49.13| 94.76| 0.0949| 90.91| 0.1291
3-SKIP 1000 | 84959| 0.484| 164.67| 94.76 0.1289| 90.91| 0.1611
6-SKIP 92423| 0.515| 148.74| 94.99( 0.1335| 90.00| 0.1726
9-SKIP 95770| 0.531| 141.24| 95.22 0.1239| 90.00| 0.1618
Correct Ratio 120293| 0.640| 100.15( 95.22 0.1129| 90.00| 0.1544
Table 3. Results orOCR

Method | Epochs | Samples| Time | % SpdUp | Train | TranMSE | Test| Test MSE
Standard 207100000| 8527.946 N/A | 99.99( 0.0002| 99.96| 0.0006
Error Based 939790| 185.898| 4487.43| 99.96( 0.0011| 99.93| 0.0014
SET 1188387| 194.773| 4278.40| 100.00] 0.0002( 99.97( 0.0005
3-SKIP 52760243 2312.724| 268.74( 100.00f 0.0002| 99.96| 0.0006
6-SKIP 500 31710579| 1401.750{ 508.38( 100.00f 0.0002| 99.95| 0.0006
9-SKIP 24262191| 1114.810( 664.97| 100.00| 0.0002( 99.96( 0.0006
12-SKIP 20566468| 942.520| 804.80| 100.00f 0.0002| 99.96| 0.0006
18-SKIP 18116504| 854.524| 897.98| 100.00| 0.0002( 99.97( 0.0005
24-SKIP 18161186 857.508| 894.50| 100.00] 0.0002( 99.96( 0.0006
Correct Ratio 4378508[ 328.290| 2497.69| 99.99| 0.0005| 99.94 0.0010

SET proves superior in terms of accuracy, genenglizqually well or better than
standard training on all three data sets. It igemmnservative than Error Based in
choosing what samples to exclude, hence yieldbtsliglower training. It still improves

training time by 4278% o®CR In other words, training on this large data iset
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performed in less than 2.3% of the standard tinggired. This translates to a drop in
training time over one-and-a-half orders of magietufrom hours to minutes (see

Figures 1 and 2).

All variants ofn-SKIP produced roughly equivalent results in geliwation compared to
standard training. They achieve a speed up roygiolyortional to thein factor on large
data sets. On fewer data, smalteperform better. 3-SKIP learrimeast cancerthe
quickest of all methods tested. 18-SKIP generslaewell as SET o0@CR although it
does not display as marked a decrease in traiimmg (since 18 full epochs must occur

before any samples are pruned).

Correct Ratio achieves higher accuracy and is fastéreast cancethan Error Based,
although it is 76.6% slower o®CR It is only slightly worse in generalizing than
standard training. Its training time is roughlg thedian over all four methods on these
data sets. As training continues, this technigumels to prune more and more samples.
The percent of samples pruned per epoch is equivadehe training set accuracy in the

limit.

212

www.manaraa.com



Chapter 9. Speed Training: Improving the Rate of Backpropagation Learning
through Stochastic Sample Presentation

18

1 101 201 301 401 501
Epoch

Figure 1. Training time per epoch (log scale) O€Rwith SET (darker) vs. standard
training.
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Figure 2. Samples presented per epoch (log scal€)GRwith SET (darker) vs.
standard training.

6 Further Work

Further efforts will combine speed training withhet “optimized” backpropagation
algorithms (e.g., Quickprop and RProp). Togetlas, conceivable that they will speed

up convergence as well as reduce time spent pehepsample presentation.
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Extending speed training to other iterative leagninodels, where the effectiveness or
need of sample presentation varies over time, alglb be studied. In particular, speed
training will be tested wittbatchlearning, where training time is very slow and dpoc

speed up is extremely desirable.

In addition to speeding up training, presenting [gas with the most error more often
may in general discourage overfitting. As proposeld], generalization is affected most
by the size of the network parameters. When lagroontinues until weight saturation,
generalization can be compromised. Excluding Vegltned samples from further
training can be a mechanism for keeping weightdisthareby improving generalization
over techniques that saturate weight parameteh& usefulness of this principle will be

investigated.

Several variations exist on the four methods pregdgere. For example, when a sample
is excluded from presentation on a given epochpthbability that it will be presented in
subsequent epochs can be gradually increased bmeal value. This provides a more
conservative approach to stochastic data exclusiohallowing samples to be removed

from training for too long.

Similarly, the way skipped samples affect samplesentation probability in Correct

Ratio can be incorporated by extending equatiom$Zpllows:

_ #epochgorrect+ a (#epochskipped)
#epochs

PE) = 1
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wherea, ranging from zero to one, provides a pruning faggiveness” factor. Far
approaching zero, skipping a sample increases tlobability of presentation in
subsequent epochs. This conservative approadtiefur experiments conducted here.
For a close to one, skipping a sample gradually redalcesprobability of subsequent

presentation, a more aggressive pruning model.

Another improvement is to automate the choosingy @ n-SKIP in order to reduce
training time as much as possible without requirggeat training runs. An extension to
this would be to dynamically alter the valuenaduring the training process to encourage

further speedup.

Furthermore, the value from whichxP(is derived in Error Based, SET, and Correct
Ratio speed training can be augmented by a schlitgr to provide more conservative
or aggressive sample pruning. However, a non4lifgaction of error to B{) is more
general and may prove more effective. Investigatid these modifications will be

presented in future work.

In the experiments presented here, no parametaémiaptions were performed;
commonly used, standard parameter values were poced for learning rate,
momentum and error threshold. Work will be donehbserve the effect of modifying

these parameters on the time and accuracy of #pessl training techniques.
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7 Conclusion

Speed training provides an alternative to standardple presentation in neural network
training. It is a viable solution to overcomingppibitive training costs in learning very
large data sets with complex networks, and is derradtive to techniques such as
subsampling [3] to reduce training time. It hasven effective on a variety of data sets
with vastly different properties. Training time reduced by roughly an order of

magnitude and generalization is preserved.

A major weakness of standard backpropagation neuwgblork learning is its slow

training speed. Any of the proposed stochastic panpresentation schemes are
appropriate if rapid training speeds are requirddera very minimal drop in accuracy is
acceptable. If accuracy is paramount, then coasiges sample exclusion techniques,

such as SET, provide dramatic speedup with no tidtiecloss of accuracy.
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Chapter 10

Conclusion and future work

Three classification-based algorithms for ANN leagn CB1-3, have been presented and
evaluated on several applications under a varielyasning conditions. CB1 was shown
to perform significantly better than convention&ESand CE error functions on several
small- to medium-sized benchmark data sets, onrge l@CR data set, and on the
TIDIGITS corpus as part of a speech recognition systen2 Wd shown to have higher
average classification accuracy than CB1, althahghincrease was not significant (p =
0.05). However, CB2 was observed to have sigmflgahigher generalization when
measuring the area under the ROC curve (AUC-RC&Well variance in results and
lower sum-squared error than CB1. CB3 was showsetsignificantly superior to CB1,
CB2, SSE and CE, with and without weight decaythendata sets tested with respect to
classification accuracy and AUC-ROC. CB3 was alsown to be most robust to the
size of the network, learning parameters, and cgavee criteria. Network models
trained with CB1-3 were demonstrated to have loawarage weight magnitude for each
layer of the network than training with SSE or CHile/ converging in a comparable

number of training epochs.

PL1, a point-wise local binning method for moddilmation, was proposed and applied
to calibrating ANNs and other machine learning niedelt was shown to be more
effective than isotonic regression, a state-ofdfteealibration method, in improving

neural network posteriors. A subsequent study skoRL1 calibration of CB-trained
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networks to be highly effective in reducing posiemestimation error. Calibrated CB3
networks were measured as being as precise asatatibnetworks trained to optimize

CE.

There are other ways to apply CB training techréqudempirical tests showed that
pattern misclassifications are not highly corralatanong the various error functions.
This observation invites study into the practicgplecation of combining networks
trained with various error functions into hybridsembles. It is expected that this will
further improve generalization with respect to aietyg of goodness metrics over both

stand-alone models and homogeneous ensembles.

It is also worthwhile to study the efficacy of ugimore than one global objective
function in the training of a network. One examgiehis is to train a model to optimize
with respect to one metric and then continue ogiimgi with respect to another. CB-
trained networks were shown to avoid pre-maturegitesaturation and converge with
significantly lower weight magnitudes than SSE- d@8-trained networks. In some
cases, the trained network has weight magnitudésmmach larger than the initial

untrained network. We have considered first tragrée network with CB3, selecting the
best model epoch with a validation set, and thaimitrg that model to optimize SSE or
CE. Beginning SSE or CE training in a state ohhagcuracy and low network weights
can preempt the possibility of converging to lepsifal local minima while retaining

the possibility of further improving the networkaccuracy. Preliminary results on

benchmark data sets are encouraging.
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Another conceivable method of training with morarthone error function is to learn
different portions of a problem domain with diffatecost functions. Local regions of a
problem’s feature space may be learned more aetyrahen optimizing with respect to
one error function than another. In this casmat be better to trade optimizing a single,
global error function in favor of optimizing wittespect to different error functions in
local, distinct regions of the problem space. Q@B®2s this in some measure by altering
the strength of the error signal backpropagatedutiit the network based on the
network’s ability to learn training patterns, bubma direct approaches may be useful in

providing better human understanding of a problem.

Another way to divide a problem into separate labla regions is semantically, by
concept class. In multi-class problems, certaass#s may better be learned by some
model representations than by others. This wotdthgbly be most apparent in complex
problems with a high number of classes, such a®@R, document identification, or
speech recognition system. Developing approaabresemantically grouping problem
classes according to their ability to be learneenvbptimizing with respect to various
error functions could prove useful to formulatingoma structured problem
representations, thereby facilitating the impleragah of mechanisms for more effective

learning.
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Optimal Artificial Neural Network Architecture Sele ction for
Bagging
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Abstract. This paper studies the performance of standarditacthre selection
strategies, such as cost/performance and CV basddgies, for voting methods such as
bagging. It is shown that standard architecturectiein strategies are not optimal for
voting methods and tend to underestimate the coatplef the optimal network

architecture, since they only examine the perfocaanf the network on an individual

basis and do not consider the correlation betwegponses from multiple networks.

1 Introduction

There are several well-known methods for combinthg predictions of multiple
classifiers in order to obtain a single predicti@hese include Bayesian methods [16],
bagging [6], boosting[13], and other voting meth@8]. However, little work has been
done on the problem of model selection when udiege¢ methods. This paper examines
the problem of selecting an appropriate neural agtvarchitecture when using bagging

and other voting methods to combine the predictioihsultiple neural networks. We
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show that standard architecture selection strageggenot always select optimal neural

network architectures for such methods.

Section 2 discusses voting methods and the probleselecting an optimal network
architecture for such methods. Section 3 discuseksed work in the field of
architecture selection. Section 4 gives experialerdsults, and section 5 gives the

conclusion.

2 Architecture Selection for Voting Methods

Neural network architecture selection strategiadistl in the literature have focused on
choosing the single best performing architectuoenfa group of architectures, generally
using some kind of cost/performance tradeoff or geeformance of the network on a
holdout set as the selection criteria. Under cer@ssumptions, these architecture
selection criteria can be shown to be optimal. Hewesuch performance measures are
only optimal in the case where a single networtoibe used as the final predictor, and
are not optimal for the architecture selection pebwhen using bagging or other voting
methods to combine the predictions of several nenesworks. From a Bayesian
standpoint, the optimal prediction is obtained lcualating a weighted average of all
possible network architectures and all possiblegitesettings for those architectures,
where each network is weighted by its posteriobahility. From a purely Bayesian

standpoint, any architecture selection strategy ciwhthooses a single network
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architecture using a cost/performance tradeofulsaptimal, since it entirely ignores a

large number of possible architectures that cogidificantly impact the solution.

Obviously, the calculation of this weighted averaige computationally infeasible;
however, the optimal prediction can be approximateé number of different ways.
Bagging, which can be viewed as an approximatiorth®s Bayes optimal solution,
generates a prediction by calculating a weighteeraye of several predictors. With
bagging, the weight is usually set to 1 for eackdmtor, which amounts to the
assumption that all of the predictors are equathyppble from a Bayesian standpoint.
This assumption is not unreasonable since the goediare often not likely to greatly
differ in their posterior probabilities, and it még difficult to accurately estimate the

true, relative a-priori probabilities.

Bagging and other voting methods work best when dhers between the various
predictors are uncorrelated, and the correct resgsorbetween the predictors are
correlated. Generally speaking, very simple predsctend to have both correlated errors
and correlated correct responses. For examplepbiiee simplest ways to formulate a
predictor is to always predict the majority cladstloe training set. Obviously, using
multiple such predictors cannot increase classifinaaccuracy, since the errors (and
correct responses) of such predictors are 100 pecoerelated. As the complexity of the
predictors is increased, the correlation betweenrédsponses of the predictors tends to

decrease. This is because with increasing contglthére is a corresponding increase in
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the number of different solutions (minimum error the training set) that the predictor

can produce.

Since bagging and other voting methods work bestnathe correct responses between
predictors are correlated and the incorrect regmase uncorrelated, when bagging or
other voting methods are used to combine the wesdilmultiple networks the goal for
neural network architecture selection is to chodse network architecture that
maximizes the correlation between multiple trairmgbies of the network when the
networks are producing the correct response, amihmzes the correlation between the
networks on incorrect responses. So, the netwodkitacture which maximizes a
cost/performance tradeoff, or even that performs liest on a holdout set, is not
guaranteed to be the best architecture for baggimge it does not examine this

correlation.

There are a number of factors that can influeneectivice of the appropriate network

architecture for voting methods such as baggings&hnclude but are not limited to:

* Number of bagged predictors
* Number of training examples
» Underlying problem domain

» Idiosyncrasies of the training algorithm
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For example, lowering the number of training exaapk likely to require lowering the
complexity of the network architecture in ordematthieve optimal performance. It is also
possible that increasing the number of predictars the bag” may allow for a

corresponding increase in the complexity of thevoet architectures being bagged.

3 Related Work in Architecture Selection

There have been a number of different architectalection strategies studied in the
literature. These strategies are all ultimatelyebdasn either the use of a holdout set or a
cost/performance tradeoff to determine the ‘optimagtwork architecture. These

strategies include the following:

Network Construction Algorithms

The majority of network construction methods stann a very simple basis, usually one
node, and add nodes and connections as neededeantorlearn the training set. These
strategies include Cascade Correlation [8], DNAL, [Ziling [14], Extentron[3],
Perceptron Cascade [7], the Tower and Invertedn®igralgorithms [10], and DCN [17].
Other construction algorithms include Meiosis [Htjd node splitting (Wynne-Jones

1992).

One of the drawbacks of most current MLP constamcailgorithms is that they do not
have built in mechanisms to prevent the networknfimverlearning, rather treating this

important subject as an afterthought. For examplergess states that "for good
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generalization it is necessary to restrict the sizéne network to match the task,” [7] but
no specific algorithm is presented on how to do Iseft uncontrolled, all of these
methods will suffer from over learning, and so ome respects they do not avoid the
architecture selection problem but must utilize sotgpe of architecture selection
strategy (such as CV or MDL based strategies) iateempt to avoid over learning. This
is due to the fact that, left uncontrolled, thewark structure can grow to fit the training
set data exactly. But with many problems the trajnilata may contain noise that will
cause the algorithm to perform worse if the noisstances are memorized. Also, the
network can grow to the point that the amount aining data is insufficient to properly

constrain the network weights.

Early Stopping

Early stopping strategies [1,9,18,23] utilize oyarbmplex network architectures. One of
the main advantages of using a network that is moreplex than is actually needed is
that larger networks tend to have fewer local manimthe error surface. However, with
a larger network there is a higher likelihood thegr learning will occur. In other words,

larger network architectures are more likely tovarge to a lower training set error, but
often tend to produce higher error on non-trairemgmples. In order to avoid this, early
stopping strategies try to determine when the netwas been trained sufficiently to do
well on the problem but has not yet over learnedn{emorized) the training data. One
way to do this is to occasionally test the perfano®aof the network on a holdout set and

stop training when the performance on the holdetibegins to degrade.
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Cross Validation (CV)

CV is often used to select an optimal architectinoen amongst a set of available
network architectures. In a comparison of CV witlo tother MLP architecture selection
strategies in a recent paper [20] CV was founddaHhe best at choosing the optimal
network architecture, at least on the data setsdeklowever, the comparison was based
on only a single type of artificial data and didt dook at any real world problem

domains.

In a larger study CV was found to not perform welhen selecting an optimal
architecture from a large set of relatively simidaichitectures [2]. Several strategies are
suggested which can be applied when using CV bbMded architecture selection to

significantly improve the performance CV based aedhture selection.

Weight Decay

Weight decay adds a penalty term to the error fandhat favors smaller weights [5,
12]. The rate of weight decay is often chosenraining several different networks with

different rates of decay and then using CV to estitmvhich rate is optimal.

Network Pruning

Pruning techniques start with an overly large neltwand iteratively prune connections
that are estimated to be unnecessary. CV is ofted to assist in the estimation process.

The pruning can take place during the training @ssor training cycles can be alternated
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with pruning cycles. Pruning strategies include i@pt Brain Damage [21],

Skeletonization [15], and Optimal Brain Surgeon][22

4 Experiments and Results

Experiments were conducted several data sets iar dal empirically determine the
efficacy in cost/performance tradeoff and CV basedhods in determining the optimal
network architecture for bagging. The real worldadsets were obtained from the UC

Irvine machine learning database repository.
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For the results reported in this paper the complelavel of the tested network

architectures ranges from 2 to 20 hidden nodesgedhin a single hidden layer of a fully
connected network. In order to determine the bedtitecture for bagging, 30 sets of
network weights are trained for each complexityelan this range, and the performance
of the 30 bagged networks is evaluated for eachhef network architectures. The
performance and complexity level of the best aethitre for bagging is then compared
against bagging’'s performance and complexity levgihg the network architecture

chosen by Akaike’s information-based criterion (Al@nd with the architecture selected

by CV.

Figure 1 shows the test set results of the baggddonks for each of the network

architectures tested on the Breast Cancer Wiscalsaset. This data set is interesting
because it shows a significant general upward themelst set accuracy as the complexity
of the bagged networks is increased. However, tisenet a significant upward trend in

the test set scores of the networks taken indiViglfaor in the training set scores), as
can be seen in figure 2. Because of this, architecselection strategies which only
examine the performance of the individual networkisch as most cost/performance
measures and also CV based measures, are unlikélydtthe optimal architecture for

bagging for this particular problem. Indeed, fastparticular problem the AIC measure
chooses the simplest network architecture, which &aagged network performance
which is significantly worse than the best perfonge of the tested architectures (95.9%

vS. 96.9% on the test set).
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Figure 2. Breast Cancer Wisconsin - no Bagging.

Figure 3 shows the test set performance of AIC G%. for selecting the network
architecture for bagging, and compares this agéestoptimal’ network architecture for
bagging. On average, the AIC criteria is signifitamorse than using CV to choose an
architecture for bagging, and both generally faipick the optimal network architecture

for these problems.
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Figure 3. AIC vs. holdout vs. optimal test set accuracy.

Both AIC and CV significantly underestimate the gexity of the best architecture for
bagging for these problems, as can be seen inefiguwith AIC on average choosing a
network with 4 hidden nodes and CV choosing aniercture with 6 hidden nodes, with

the optimal network architecture for bagging camiteg (on average) 14 hidden nodes.
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Figure 4. Average complexity of chosen architecture forheamblem.

5 Conclusion

The experimental results show that, for the proBldested in this paper, the optimal
network architecture for bagging (and by extensather voting methods) is more
complex than the network architecture chosen bymadormance tradeoff methods such
as MML and MDL, and also more complex than the oekwarchitecture chosen by CV

based methods which only examine the performandediwidual networks. We have
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argued that this empirical result will hold for mdgarning problems, since these
strategies are only designed to identify the optimatwork architecture if a single
network will be used as the final predictor. Wheultiple networks are combined using
a voting method, then these strategies tend torastimate the complexity of the optimal
network architecture since they cannot estimateddgee to which the responses of the
different network architectures will be correlateahd this estimate is critical in the

determination of the optimal network architectueoting methods.

The factors which may affect the optimal complexay bagging and other voting based
methods include the number predictors that will ym¢ed, the number of training
examples, the underlying problem domain, and idiosgsies of the training algorithm.
Future work will focus on studying the effects aich of these factors, as well as
developing a systematic methodology for selecthey dptimal network architecture for

voting methods.
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Abstract. Often the best artificial neural network to solaereal world problem is
relatively complex. However, with the growing poguty of smaller computing devices
(handheld computers, cellular telephones, autoraobierfaces, etc.), there is a need for
simpler models with comparable accuracy. The folhgwesearch presents evidence that
using a larger model as an oracle to train a smaltelel on unlabeled data results in 1) a
simpler acceptable model and 2) improved resules gtandard training methods on a
similarly sized smaller model. On automated spo#tigyit recognition, oracle learning
resulted in an artificial neural network of halfetlsize that 1) maintained comparable
accuracy to the larger neural network, and 2) olethup to a 25% decrease in error over

standard training methods.

1 Introduction

As Le Cun, Denker, and Solla observed in [1], oftlea best artificial neural network
(ANN) to solve a real-world problem is relativelgraplex. They point to the large ANNs
Waibel used for phoneme recognition in fjd that of Le Cun et al. with handwritten
character recognition in [3]. “As applications bew more complex, the networks will

presumably become even larger and more structuf@fl.The growing complexity of

239

www.manaraa.com



Appendix B. Network Simplification through Oraclearning

neural networks in real-world applications preseatproblem when using them in
environments with less available memory and praoggsower (i.e. embedded systems
like handheld computers, cellular telephones, .etthgrefore, there is a demand to create
smaller, faster, neural networks that still maimtai similar degree of accuracy. The
oracle learning solution involves using the mostuaate available model as an oracle to
train a smaller model. We propose that oracle lagrwill result in simpler models that
1) have accuracy comparable to their oracles, améZ improved results over standard
training methods for the same sized model. ForfetHewing experiment, simple feed-
forward single-hidden layer ANNs were used as libthoracle and theracle-trained
network(OTN). We propose the use of the following nomeanaie for classifying OTNs

within this paper:

OTN(h m)

Reads “an OTN approximating anhidden node ANN with am hidden node ANN.”

For example:

OTN (200 100)

Reads “an OTN approximating a 200 hidden node ANtk & 100 hidden node ANN.”
The rest of the paper describes oracle learningrims of ANNs since the experiments
deal solely with ANNs. We refer to the oracle asoascle ANN(which is no different

than a standard ANN, it is just used as an oracle).
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One of the advantages of using an ANN as an oliactee ability to use unlabeled

training data to train smaller ANNSs. In speech ggttion, for example, there are more
than enough data, but it is difficult and expendiwehand label them at the phoneme
level. However, if an oracle ANN exists, the sntaleNN can theoretically request as

many labeled data points as is nhecessary to bpatxdmate the larger or oracle ANN.

The idea of approximating a more complex modelas entirely new. Domingos used

Quinlan’s C4.5 decision tree approach from [4]5htp approximate a bagging ensemble
and Zeng and Martinez used an ANN in [6] to apprate a similar ensemble (both
using the bagging algorithm Breimen proposed ii. [Zfaven and Shevlik used a similar
approximating method to extract rules [8] and trg&&sfrom ANNs. Domingos and

Craven and Shevlik used their ensembles to gengeaténg data where the targets were
represented as either being the correct class brZemg and Martinez used a target
vector containing the exact probabilities output thg ensemble for each class. The
following research also used vectored targets amtil Zeng and Martinez since Zeng's
results supported the hypothesis that vectoredtsrgapture richer information about

the decision making process . . .” [6].

While, previous research has focused on eitheraetiig information from neural
networks [8,9], or using statistically generatethd#&,6] for training, the novel approach
we propose in this paper is to use the approximatddiork as an oracle. The next

section explains the details of the oracle learpirggess.
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2 Oracle Learning

Oracle learning involves the following 3 steps:

A. Oracle Preparing
B. Data Labeling

C. Oracle Learning

2.1 Oracle Preparing

The primary component in oracle learning is theclerdself. Since the accuracy of the
oracle ANN directly influences the performance loé fiinal, simpler ANN, the oracle
should be the most accurate classifier availatdgandless of complexity (number of
hidden nodes). The only requirement is that the bemand type of the inputs and the

outputs of each ANN (the oracle and the OTN) bestmae.

2.2 Data Labeling

The main step in oracle learning is to use thelerAblN to create a very large training
set for the OTN to use. Fortunately the trainingdsees not have to be pre-labeled since
the OTN only needs the oracle ANN’s outputs forivaey input. Therefore the training

set can consist of as many data points as the@varable, including unlabeled points.

The key to the success of oracle learning is tainlds much data as possible that ideally

fit the distribution of the problem. There are savevays to approach this. In [6], Zeng
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and Martinez use the statistical distribution of tinaining set to create data. Another
approach is to add random jitter to the training again following its distribution. The
easiest way to fit the distribution is to have mongabeledeal data. In many problems,
like ASR, there are more than enough unlabeled. d@ti@er problems where there are
plenty of unlabeled data include intelligent weltwalment classifying, optical character
recognition, and any other problem where gathetivegdata is far easier than labeling
them. The oracle ANN can label as much of the dataecessary to train the OTN at the
phoneme level. Therefore, the OTN has access tarhitrary amount of ideally

distributed training data.

In detail, this step must create a target vector each input vectax where each in t; .

.. t (n being the number of output nodes) is equal to tiaele ANN’s activation of
outputi givenx. Then, the final oracle learning data point cargdothx andt. In order
to create the points, each available pattetabeled or not, but not including a small
labeled subset for testing) is presented as art itgpthe oracle which then returns the
output vectort. The OTN'’s training set then consists of everypaired with its

corresponding.

As an example, the following two vectors repredéipttarget vectors for a given input.
The first vector is a standard 0-1 encoded targetreithe % class is the correct one. The
second is more representative of an ANN outputorefthe oracle for the following

experiments) where the outputs are between 0 aaddithe ¥ class is still the highest.
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(1) <0,0,0,1,0>

(2)  <0.27,0.34, 0.45, 0.89, 0.29>

Now suppose the OTN outputs the following vector:

(3)  <0.19,0.43, 0.3, 0.77, 0.04>

The standard error would simply be the differeneeMeen the target vector in (1) and

the output vector in (3) which is:

4) <-0.19, -0.43, -0.3, 0.23, -0.04>.

Whereas the oracle-trained error would be the miffee between the target vector in (2)

and the output in (3):

(5)  <0.08,-0.09, 0.15, 0.12, 0.25>

Notice the oracle-trained error in (5) is on averégver than the standard error in (4),

and therefore the OTN learns a function that may ebsier for standard back-

propagation.
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Once again, Zeng and Martinez found the use ofovedttargets to give improved

accuracy over using standard targets in [6].

2.3 Oracle Learning

For the final step, the OTN is trained using theadgenerated in step 2, making sure to
utilize the targets exactly as presented in thgetavector. The OTN must interpret each
element of each target vector as the correct ouwdptivation for the output node it
represents given the input paired with it, henee ANN’s learning algorithm may need
to be modified depending on how it handles targEts. most ANNSs, classification
targets are encoded in binary with the correctscéss1 and all others as 0 and hence the
error is generally computed as {0 | 1¢-whereo; represents the output of noidéVith
oracle learning, the error would instead bettheo, where, as stated abowugis theith
element of the target vectorpaired with the inpuik. The outputs of the OTN will

approach the target vectors of the oracle ANN ah @ata point as training continues.

3 Experiment

One of the most popular applications for smallempating devices (i.e. hand held
organizers, cellular phones, etc.) and other endmdikvices is automated speech
recognition (ASR). Since the interfaces are limitadsmaller devices, being able to
recognize speech allows the user to more effigiegniter data. Given the demand and
usefulness of speech recognition in systems lackingiemory and processing power,

there is a demand for simpler ASR engines capabkrloieving acceptable accuracy.
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Hence the following experiments seek to reduce dbmplexity of our current ASR

engine—or more specifically, the phoneme classifyANN portion of the engine.

The following experiments use data from the unlatbell digit corpus [10] for testing
the ability of the oracle ANN to create accuratemdme level labels for the OTN. The
corpus was partitioned into a training set of 12,8&erances (3,000,000 phonemes), and
a test set of 1000 utterances. A small subseteotrtining corpus consisting of around
40,000 phonemes was labeled at the phoneme levetaining the oracle ANN. The
inputs are the first 13 mel cepstral coefficientsl @aheir derivatives in a 16 ms frame

extracted from wav files every 10 ms (overlapping).

It is important to mention the fact that the fimaéasure of accuracy is performed at the
word and utterance levels, not the phoneme levelgeneral, word and sentence
accuracies are more significant in speech recagnénd do not always directly correlate
with phoneme accuracy. It depends on the decodiolgnique and / or speech model
used to build phonemes into words. In fact, in ipriglary experiments, the standard
trained networks always had slightly better phonewwauracies than the OTNs (for any

size).

Figure 1 diagrams the basics of the ASR engine tdsedhe experiments. The mel
cepstral coefficients are fed into the ANN and &N phoneme outputs are decoded
into words. Both the oracle ANN and the OTN areduas the neural network recognizer

part of the engine when determining word and uttegaaccuracy.
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Figure 1. The basic ASR Engine.

A) Obtaining the Oracles

The ASR engine’s standard neural network recogrizex 200 hidden node standard
back-propagation-trained feed-forward network thas been tuned and optimized over
time. In the following experiment, the ANN is trah directly on the phoneme labeled
training data, storing the ANN weight configuratsofor future testing. Although the

ANN most accurate on the test set (words and uitexs) was chosen as the oracle ANN,

any one of them was sufficient to validate oraelaring as long as the OTN achieves
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similar accuracy. We chose to use the most accuiifd in order to create the most

accurate OTN.

B) Labeling the Data Set

For the next step a large training set was creftad the unlabeled data. The entire
15,000+ utterance training set was used to createwatraining set consisting of the
inputs from the old set combined with the targettoes from each oracle (one data set
for each oracle), acquiring the target vectorsxgsaied in section 2.2 (from the oracle
ANN'’s outputs). In detail, oracle learning presetits oracle with an input pattern and
then saves the activations of each output nodéh&drinput as a vector. The new OTN'’s

training vector then consists of the original inpad the new target vector.

C) Oracle Learning

Finally, the large OTN training set created in Buged to train an ANN half the size of
the oracle (100 hidden nodes) using vectored taiigstead of 0-1 targets according to
the method described in section 2.3. For a givamitrg pattern, the error back-

propagated was set to the difference between theleoANN’s output node activation

and the OTN’s output of — o; wheret; is the oracle’s output for classando; is the

output of the OTN net on clags
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To measure the effectiveness of oracle learningnduhe training phase, several metrics
were used: the mean error with respect to the targetor, accuracy compared to the
oracle ANN, and the top 100 OTN outputs comparedttip 100 oracle ANN outputs.
The general trend during training was for each ta@f metrics to improve, however,
contrary to intuition, the best OTNs did not hale best values according to our metrics.
It would be intuitive to believe the ANN with thedst error with respect to the oracle
would perform most like the oracle and hence haeebest overall accuracy, but it did
not. We hypothesize the reason was the phonemeitd-decoding module did better
with networks better arranging the ordering (fromghlest to lowest) of the output
activation levels, regardless of the single higleegput of the oracle ANN. The decoder
considers more than just the top output, so wheeenext several outputs are ordered
correctly, better word accuracy results. Therefewen though one network may be more
likely to have the same highest scoring phonemth@®racle, the final ordering of the
probabilities is better in a network with slightty worse overall accuracy against the

oracle.

A standard 100 hidden node network was also tramedder to compare it to the oracle

learning 100 hidden node OTN (200100).

After every oracle learning epoch, word and utteeaaccuracies were gathered and the
respective OTN weights saved. The weights of thetraocurate epoch were chosen as

the best OTN of that particular oracle learning. run
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4 Results and Analysis

Table 1 reports the accuracy for each of the meatlcANNS on the test set (the standard
back-propagation-trained 200-hidden node ANN usedha oracle, the OTN (200
100) and the 100 hidden node standard net). Sentmauracy refers to the percentage of

times where the ASR system recognized the digigintterance correctly.

Table 1. ORACLE LEARNING ACCURACIES

Network
configuration
200 hidden
nodes
(standard, the
oracle ANN)

OTN (200
100)
100 hidden
nodes 99.41 98.10
(standard)

Word % Sentence %

99.59 98.70

99.56 98.60

As seen above, an OTN (200 100), having half as many hidden nodes than dsley
achieves a comparable accuracy, 99.56% instea®.68%. The OTN (200 100)’s
accuracy also demonstrates 25% less error thamirtgaa 100 hidden node net with the

standard back-propagation approach (99.56% vs198).4

One reason for the improvement is that the OTNtn as long as necessary to over-fit
on the oracle ANN’s outputs using the large amaininlabeled data and hence “sees”
far more data points than the standard trained ar&twhich can only be trained with

labeled data. Also the fact that the OTN (200L00) is learning a simpler function than
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the 0-1 encoding the standard 100-node network rassnh may aid its improved

accuracy.

5 Conclusion and Future Work

The results of the experiment support the theomt tinaining a smaller ANN to

approximate a larger ANN results in 1) a less caxpietwork capable of accuracy
comparable to its oracle, and 2) improved accu@r standard training of smaller
ANNSs. An OTN with half the complexity of its oradted significantly less error than the

standard trained model, and achieved comparableaxncto its oracle.

Future work in this area includes several more expts. First, research will be done
to determine how well even smaller ANNs perform wlagproximating both the original
oracle and even approximating larger OTNSs. It ipontiant to determine the relation
between the sizes of both the OTN and its oracl®&ARNor example, does a 50 hidden
node network yield better results approximatingdhiginal 200 hidden node oracle or an
OTN (200 100)? Next, even more powerful oracles will beagidd (including
mixture models, ensembles, etc.) to ascertain dirstness of using OTNs when

presented with non-ANN oracles.

Preliminary results in the above areas indicatettiecloser the complexity of the oracle
ANN to the OTN, the better the OTN performs. Foamyple, in one experiment, an OTN

(100  50) achieved higher accuracies than an OTN (2080). If this trend persists,
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the ideal size will be determined (number of hiddewdes) for an OTN to approximate
even more complex oracles (mixture models, ensenli¢éc.) to reveal how the

complexity of an ANN relates to the complexity @mANN models.

Other research includes using the above complerégisures to develop a system for
more accurately comparing complexity between différclassifier models (i.e. ANN
compared to mixture-of-gaussian ASR models). Thatesy would be in terms of the
number of hidden nodes needed to effectively apprate a given model and would be
obtained by simply oracle-training ANNs of variog&zes using the model being
measured as the oracle. The main problem in tleia aould be handling the different

inductive biases between the models.

The ASR engine used in the experiment uses a detioaletakes as much advantage of
the order of the outputs as it does the single dsgloutput. Therefore, in order to
determine if oracle learning can be as effectivenoblems that do not require or lend
themselves to decoding, further experiments withpare and contrast decoded and non-

decoded problems to find the correlation.
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